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Summary

For two reasons quantitative post-Chernobyl assessment of the thyroid cancer risk from 131I
exposure in children under age 18 at the time of accident has been carried out with spatially
aggregated data. Firstly, individual data has not been available up to now. Secondly, a
large number of individuals can be included in the analysis for a better statistical power.
But aggregation can destroy important individual information. Therefore, the risk estimate
from an ecologic study may be biased, especially in the presence of confounding factors. In
1998 Lubin has investigated such an ecologic bias for lung cancer caused by radon exposure
confounded by smoking. We generalise his approach for the Chernobyl case where enhanced
medical surveillance (or screening) has been identified as the most important confounder of
cancer incidence data. Our investigations were performed with both Monte-Carlo simulations
and analytical calculations, respectively. Based on realistic dose estimates for 743 Ukrainian
settlements we simulated individual data sets on exposure, screening and health status for
366397 children. To generate the cancer cases, an individual risk model with linear dose
response has been combined with three different screening models. Poisson regression on
a linear model for a mean settlement risk produced an ecologic bias in most cases, when
screening information was neglected. The estimated risk parameters deviate from the true
mean parameters which describe the true risk in the population. The bias is caused by those
correlations between screening and risk factors, which have not been included in the definition
of the true population-based risk. Analytical relations have been derived to calculate the bias
numerically exact from the population data.
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accident

∗ Corresponding author: e-mail: christian.kaiser@gsf.de



Risk effects of enhanced surveillance 2

1. Introduction

Recently, a number of studies (Buglova et al. 1996; Jacob et al. 1998; Jacob et al. 1999;
Likhtarev et al. 1999) on the thyroid cancer risk of children exposed to 131I after the Chernobyl
accident has been performed for contaminated areas of the former Soviet Union. They were
based on aggregate exposure data to increase the number of persons at risk for a better
statistical power. Astakova et al. (1998) have carried out a case-control study in Belarus for
a limited number of individuals. But sufficient individual data for the total study population
is not (and will probably never be) available. The results from the ecologic studies supported
a linear dose-response relationship and gave estimates of the excess absolute risk per unit
thyroid dose (EARPD). However, Ron et al. (1992) have emphasised that a good control of
possible confounding factors is essential to derive reliable risk estimates. Enhanced thyroid
surveillance (or screening) has been identified as the most important factor, but due to a lack
of information a thorough quantitative assessment was not feasible. This was the motivation
to derive here a methodology for the assessment of possible screening effects on the risk
estimate.

After the Chernobyl accident Belarus and Russia decided to set up yearly medical
surveillance programmes for exposed children. Thus, thyroid cancer incidence may be
enhanced by screening in the form of more frequent medical check-ups, refined examination
methods like thyroid hormone testing or ultrasound imaging. Case reporting to the central
registries has been improved and an enhanced public risk awareness has also contributed
to a higher cancer detection rate. If in a cohort study all members have been examined
with the same examination method screening effects are possible but they are not correlated
to radiation exposure. But in Belarus mobile medical teams have checked children more
thoroughly in highly contaminated regions. In this case a screening factor would be positively
correlated to the thyroid dose. Ongoing research in the Ukraine revealed significant negative
dose-screening correlations on an oblast level.

A wealth of information on the limitations of risk estimates from ecologic studies is
available in the epidemiologic literature (Morgenstern 1998; Greenland 2001; Greenland
2002). For long it is known that an ecologic bias of cross-level inference may arise if
risk parameters, which have been produced with aggregate data, are assigned to individuals
(Firebaugh 1978). Parameter estimates for linear risk models may depend on the group design
even for un-confounded relations between predictor and outcome variables (Piantadosi et al.
1988). The NCRP (2001) report no. 136 lists several potential weaknesses of ecologic studies
like inadequate use of summary variables as confounders or no control of misclassification.

If a predicting variable like exposure is accompanied by a confounding risk factor,
Piantadosi (1994) noticed that the covariance between these two variables controls the
ecologic bias. This bias has been further quantified for the problem of lung cancer risk related
to radon exposure confounded by smoking (Lubin 1998; Lubin 2002). The mathematical
structure of this problem is similar to that of thyroid cancer risk from iodine exposure for
children after Chernobyl confounded by screening. There is, however, a conceptual difference
because lung cancer can be caused biologically by both radiation exposure and smoking. On



Risk effects of enhanced surveillance 3

the other hand screening does not induce cancer but increases the number of thyroid cancer
cases that are reported to the registries.

To assess the screening effect we simulated individual data sets on exposure, screening
and health status for 366397 Ukrainian children. The individual thyroid doses were simulated
based on preliminary dose estimates for 743 Ukrainian settlements. Approximate values for
the screening factor are given in Jacob et al. (1999) and the references therein. The cancer
cases were generated from an individual risk model with constant background and a linear
dose response that has been combined with three different screening models.

Poisson regression on the number of simulated cancer cases to a settlement-based (or
ecologic) linear risk model produced a bias in most cases when screening information has
been neglected. We consider the risk parameters of the ecologic model as biased if they
deviate from the true mean risk parameters which could be assigned to the study population
if all individual information on screening and exposure were available. In the Appendix
analytical relations have been derived to calculate this bias numerically exact.

2. Mean settlement risk

Let nc be the total number of thyroid cancer cases found in a study area with a population of
Np individuals at risk during an observation time ∆T = 10 yr from 1990-99. We assume that
this number can be decomposed into four components

nc = n0n +n0s +nrn +nrs. (1)

The n0n spontaneous cases would have been found during the observation time in a situation
without the accident and without enhanced surveillance. The nrn radiation-induced cases
would have become clinically relevant after the accident if the surveillance regime had been
left unchanged. The n0s + nrs additional cases may be attributed to the extended medical
check-up programmes after 1986.

Motivated by the decomposition of the total number of cases in Equation (1), the risk of
contracting a thyroid tumour is expressed as

hi j = (1+ηi j)h0 +(1+κi j)βDi j (2)

for an individual j in a geographical unit i. From here on this unit is called a settlement
with Ni persons at risk. The constant risk factor β would describe the risk in the population
after the accident without any change in the medical surveillance regime. For simplification a
constant background risk h0 is applied to the whole study population and possible age and/or
sex dependencies are neglected. The effect of screening influences the recorded incidence
of spontaneous and radiation-induced thyroid tumours in a different way if, for example, a
large number of occult spontaneous cancer cases were detected. Therefore, two individual
screening factors ηi j and κi j enhance either the spontaneous or the radiation-induced risk.
These factors were zero if the medical surveillance regime had been left as it was before the
accident.

It is impossible to collect individual data on screening and exposure for more than 300000
exposed children in the Ukraine. However, mean dose values for settlements will be available
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soon (see Subsection 4.1). Therefore, a treatment of the problem on a settlement level looks
more promising. The corresponding mean risk for a settlement i becomes

h̄i = (1+ η̄i)h0 +(1+ κ̄i)βD̄i

(
1+

covIi(κ,D)
(1+ κ̄i) D̄i

)
. (3)

Equation (3) introduces the intra settlement covariance covIi(κ,D) of the radiation screening
factor and the dose. It is derived in Appendix A. Lubin (1998) pointed out that neglecting
covIi(κ,D) in the regression causes a bias from ill-conducted cross-level inference.

The observed cancer cases were regressed on the mean settlement dose D̄i with the mean
settlement risk

h̄i,eco = h0,eco +βecoD̄i. (4)

By using h̄i,eco instead of h̄i in the regression an additional bias enters the risk analysis, because
Equation (4) ignores any information on confounders like screening. According to Stidley and
Samet (1994) this bias arises from a model misspecification. Equation (4) constitutes the risk
model that introduces the ecologic bias in the present work.

3. Ecologic bias

If all individual information on screening and exposure were available, the risk parameter

βpop ≡ (1+ 〈κ〉)β
(

1+
〈covI(κ,D)〉+ covS(κ̄, D̄)

(1+ 〈κ〉)〈D〉
)

(5)

would describe the true mean EARPD in the study population. A derivation is given in
Appendix A also for the mean background risk 〈h0〉pop.

The aim of an ecologic study is to produce an estimate for βpop (and 〈h0〉pop) to quantify
the number of excess thyroid cancer cases after the accident in the exposed population. In
the event of another accident they will help to predict the number of expected excess cases
elsewhere. This will facilitate the planning of remediation measures to provide adequate
medical treatment.

If all individuals were selected at random from the population, no correlations between
exposure to 131I and screening would occur. For this special case (Appendix B.2) an ecologic
regression with Equation (4) will yield βeco as the correct estimate for βpop.

In general, one cannot exclude possible correlations of screening, exposure and
background risk either within settlements or between settlements. Among others, they
produce the covariances 〈covI〉 (A.4) and covS (A.9), respectively. Now the ecologic
regression will give an EARPD βeco �= βpop in most cases.

The EARPD βpop would quantify the true population-based risk under the very unlikely
condition, that all individual information on screening and exposure were available. The
EARPD βeco from ecologic regression may deviate from βpop and therefore cause the ecologic
bias in the post-Chernobyl risk assessment of thyroid cancer.

Lubin (1998) used a different definition of the ecologic bias which he attributed to the
cross-level inference from the individual to the aggregate level. In our case both βeco and βpop
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are defined on the level of the total study population. Nevertheless, in both applications the
bias is caused by correlations between the risk factors and a confounding variable.

4. Materials and Methods

To simulate population data for radiation exposure, enhanced medical surveillance and health
status three stages are necessary as shown in Figure 1. They are described in turn in the next
three subsections.

individual
dose

individual
screening
factor

Poisson
regression

individual
health
status

stratification

numerically exact solutionstratification

risk
estimates

based
population−

Figure 1. Simulation scheme for one population data set, risk estimates are obtained (after
stratification) either with Poisson regression on the number of simulated cases or from a
numerically exact solution; to gain accuracy for the risk estimates this scheme is repeated
100 times

4.1. Individual dose simulation

Individual thyroid doses have been simulated for 366397 Ukrainian children in 18 birth year
groups from 1968-85 whose place of residence was known for 743 settlements in 1986 (USSR
1991). The sizes ranged from the two largest cities of Zhitomir and Chernigov with more than
80000 children to small villages with below 100 children. The study population comes mostly
from rural areas without the city of Kiev. For simplification we did not distinguish between
sexes. For each birth year group of a settlement we assumed a lognormal dose distribution
with a geometric standard deviation (GSD) of 2.2. The geometric means are the unpublished
preliminary estimates of the Ukrainian Radiation Protection Institute which are produced in an
ongoing research project together with the GSF - Institute of Radiation Protection. They are
always decreasing with age due to the higher mass of the thyroid gland. Thus, the individual
doses were drawn from 18 lognormal thyroid dose distributions in each settlement. The 18
dose means for the birth year groups can be aggregated to a settlement dose mean D̄i. The
743 arithmetic settlement dose means are shown in Figure 2 (top). The mean dose per person
and the measured maximal dose were approx. 173 mGy and 10000 mGy, respectively. Figure
2 (bottom) depicts a typical simulated cumulative dose distribution.

4.2. Screening models with correlation to exposure

Selecting realistic models for the correlation between screening and exposure is a difficult
task. Thus, our models have been invented mainly for didactic reasons. For simplification we
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Figure 2. Top: dose means for 743 Ukrainian settlements; bottom: simulated cumulative dose
distribution for 366397 individuals with arithmetic mean 173 mGy and arithmetic standard
deviation 515 mGy
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chose the same individual screening factor

ηi j = κi j (6)

for the spontaneous and the radiation dependent part of the individual risk from Equation (2).
It should be noted, however, that in the Chicago hospital study of Ron et al. (1992) 〈η〉 was
larger than 〈κ〉.

Screening above an individual dose level: individual model. If the thyroid doses for all
children were known one could fix a population-wide level Dscrn for the individual dose.
Children with a dose Di j > Dscrn would enter the medical check-up programme. The
proportion of screened children can then be taken from Figure 2 (bottom). This model is
called the individual (screening) model. It produces correlations within a settlement and
between settlements, i.e. covIi, covS �= 0.

Screening above a settlement dose level: settlement model. In a more realistic scenario only
mean doses for settlements were known (Figure 2, top). Now Dscrn denotes the settlement
dose level and all children from a settlement with D̄i > Dscrn would be screened, irrespectively
of their individual doses. For this settlement (screening) model correlations only appear
between settlements but not within a settlement, i.e. covIi = 0, covS �= 0.

Screening of a fixed proportion from a settlement: percentile model. If in each settlement
the same percentile zp of children with the highest doses are screened, only intra settlement
correlations arise, i.e. covIi �= 0. This percentile (screening) model seems contrived but
it provides valuable insight because there is no inter settlement correlation, i.e. covS = 0.
Lubin (2002) used a similar model of proportions of exposed individuals to describe smoking
information.

For an individual j in a settlement i we set

κi j = κind θi j with θi j =

{
1 : if it is screened
0 : otherwise.

(7)

The factor κind is used to scale the screening strength and has been set here mostly to one
or two. For the Chernobyl case Jacob et al. (1999) have estimated population-wide values
〈κ〉= κindzp of 0 to 4 in Belarus. Their factor S equals 1+ 〈κ〉 in this paper. Ron et al. (1992)
report a maximal factor of 11 for a cohort of patients in a screening programme at a Chicago
hospital.

Figure 3 shows simulated covariances for the three screening models as a function of the
proportion (or percentile) of screened individuals zp. For the individual and the settlement
screening model this proportion is determined by the corresponding dose level Dscrn. Specific
values are given in Tables C1, C2 and C3 in Appendix C. All covariance curves show a
similar behaviour. If for high dose levels the proportion zp is small, the covariances are also
small because of the low number of screened persons. The curves reach their maxima for zp

between 0.1 and 0.5 and tend to zero if all individuals are screened. The Equations (A.4) and
(A.9) show that the covariances are proportional to the individual screening factor κind .
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Figure 3. Simulated data points for the covariance between dose D and screening factor κ
with κind = 1, mean intra settlement covariance 〈covI〉 (– – –) and inter settlement covariance
covS (——) for the percentile (♦), settlement (��), and individual (◦ ) screening model, lines
are only guides to the eye

4.3. Simulation of health status and Poisson regression

After each individual has been assigned a dose and a screening factor the tumour risk is
fully defined and the health status can be determined. We compute the survival probability
Ψi j = exp

(−∆T hi j
)

from the risk model of Table 1 and compare it with a random number
Ψr which is evenly distributed between 0 and 1. If Ψi j ≤ Ψr, a tumour case is assigned to
the individual. Otherwise the tumour would appear after the end of the observation period.
Competing risks have been neglected because they are very small for persons younger than
32 years of age. After these three simulation steps of Figure 1 a population data set for
366397 individuals is complete. The input parameter for the simulations are summarised
in Table 1. For the situation without screening (κind = 0) approx. 160 cases are generated
which corresponds to the number of actually recorded cases in the study population. Thus
the number of cases exceeds the recorded number when we introduce screening in our
simulations.

To prepare the data for Poisson regression it must be stratified (or aggregated) on a
settlement level. The means for dose and screening factor in each of the 743 settlements
have to be calculated.

The number of expected cases in a settlement i is λi = pi h̄i,eco(h0,eco,βeco) with the
mean ecologic settlement risk from Equation (4) weighted by the person years pi = ∆TNi.



Risk effects of enhanced surveillance 9

Table 1. Simulation input parameter.

Name Symbol Value

EARPD β 2 ·10−4/Gy/PY
background risk h0 1 ·10−5/PY
screening factor κind 1 and 2

individual risk hi j = (1+ κind θi j)(h0 + βDi j)

The parameters h0,eco and βeco are estimated by minimising the (log-)likelihood function

lnLP = −2∑
i

(
ni −λi +ni ln

λi

ni

)
(8)

where ni cases have been simulated (or observed) in a settlement. The MINUIT package of
CERNLIB (James 1994) is used for minimisation.

By going through all the steps of the simulation scheme from Figure 1, only one set
of risk parameter estimates is produced. To improve the accuracy of the risk estimates, 100
population data sets were simulated with the same input parameters. The point estimate and
error bar for each regression parameter is then obtained by averaging over 100 runs (Figure 4).

5. Results

The simulations were done for the individual, settlement and percentile screening models
using Condition (7) for the screening factor. The results with κind = 2 are pooled in the Tables
C1, C2 and C3 for three series of runs with different screening dose levels Dscrn or proportions
zp of screened individuals, respectively.

In Figure 4 100 point estimates for the ecologic EARPD βeco from Poisson regression
on the number of simulated cases are shown for the settlement model with dose level
Dscrn = 50 mGy and individual screening factor κind = 1. The average over 100 simulation
runs meets the numerically exact value very well. For comparison the mean population-
based EARPD βpop of Equation (5) is also given. In this example, the ecologic EARPD
overestimates the mean population-based EARPD by a factor of 1.17.

In the percentile model the simulation results yielded no bias (Table C3). This has also
been proven with an analytical calculation in Appendix B.2. The reason is the special choice
of the settlement correlations, which are all proportional to the mean settlement dose.

Figure 5 compares the ecologic EARPD βeco with the true EARPD βpop as a function of
the fraction zp of screened individuals for κind = 1,2. Only the curves for the individual model
and the percentile model are shown. If zp = 0 the incidence is not increased by screening
and the ’naked’ EARPD β can be estimated unbiased. For zp = 1 the EARPD βeco equals
βpop = (1+κind)β because the covariances vanish.

For both models the EARPD βpop increases monotonously with zp. However, the values
for βeco reach maxima between 0.5 < zp < 0.6. These maxima do not coincide with the
maximal covariances which appear for zp < 0.4. They are formed by two contradicting trends
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Figure 4. Point estimates (• ) from Poisson regression on the number of simulated cases
for the ecologic EARPD βeco and the settlement screening model with dose level Dscrn =
50 mGy and individual screening factor κ ind = 1, average over 100 points with standard error
on the left, exact ecologic βeco = 4.52 · 10−4/Gy/PY (· · · · · ·) calculated from Equation (B.7);
true mean population-based EARPD β pop = 3.87 · 10−4/Gy/PY (– – –); β = 2 · 10−4/Gy/PY
without screening (——) was simulation input

of falling covariances and rising mean screening factors 〈κ〉. The bias increases with rising
κind . It is higher in the settlement model than in the individual model.

The background risk 〈h0〉pop is a linear function of the mean screening factor 〈κ〉 in the
percentile model (Table C3). For κind = 1 it remains always positive in the individual model
and in the settlement model. But for κind = 2 meaningless negative values can appear (Tables
C1 and C2) which would lead to rejection of the underlying risk model in a real analysis.

With the Equations (B.2) and (B.7) we can calculate the relative bias numerically exact
from the simulated population data. For all three screening models we found that the model-
specific constant

CM(zp) =
βeco−β(1+ 〈κ〉)

〈κ〉 β
(9)

depends only on the proportion of screened individuals zp but not on the screening factor κind .
With this constant the relative bias for high values of κind approaches the upper bound

βeco

βpop
=

1+CM(zp)

1+ 〈covI(κind=1)〉+covS(κind=1)
zp〈D〉

. (10)

It acquires a maximum for small zp. For zp between 2-3% the bias is 1.6 for the individual
model and 1.8 for the settlement model.
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6. Discussion

We have investigated the effect of enhanced surveillance as a confounder on the risk estimate
from ecologic studies. Based on aggregate post-Chernobyl data of radiation exposure to
the thyroid of Ukrainian children, we have performed both Monte-Carlo simulations and
analytical calculations. With a model of linear radiation-induced risk, which was combined
with three different models for the correlation between exposure and screening, grouped
population data with cancer cases have been generated. A fit on a settlement level with a
linear risk model, that neglects screening information, produced an ecologic bias both for
the background risk and the EARPD in most cases. However, with the percentile model we
showed that the EARPD can be estimated unbiased even in the presence of correlations.

With analytical calculations the bias can be obtained in a simpler and more accurate way.
We have shown that βeco (and h0,eco) can be calculated numerically by using the Equations
(B.2) and (B.7). These equations establish the relations between the individual and ecologic
risk parameters in the general case.

By comparing the ecologic risk parameter βeco with the mean population-based risk
parameter βpop of Equation (5) we assessed the range of a possible bias. For our screening
models we simulated a maximal factor of 1.3 for the relative bias of the EARPD. It occurs for
intermediate values of zp and for κind = 2. In reality κind can be much higher (Ron et al. 1992).
In this case the relative bias increases asymptotically until it reaches an upper bound which
stays well below the factor of two. This moderate value is partly caused by the assumption of
a constant background risk. Uncertain dose estimates or migration from the original places of
residence constitute additional potential for bias.

In reality the dose-screening correlations are expected to be weaker and will not follow
strictly our didactic models. Moreover, screening scenarios are imaginable where the relative
ecologic bias is smaller than one. This is the case if intensive screening took place in larger
cities with low mean doses. Now screening and exposure are negatively correlated.

Finally, we can apply our methodology to assess the risk estimates for another hypo-
thetical case. To date a cohort study with more than ten thousand members is carried out
in the Ukraine (Tronko et al. 2003). Cases from this study will enter the cancer registry
which will also be the data base of a future aggregate study. By mixing the cohort data and
population-based aggregate data an additional bias will arise. We are able to estimate the order
of magnitude of this bias by using Equations (B.2) and (B.7). We assume that 2.5% or 9160
children of our study population are included in this cohort. They are selected at random with
a typical screening factor of 10. If approx. one half of the study population have been screened
in conventional check-up programmes with a screening factor κind = 2, the proportion zp of
screened individuals with the cohort included is only slightly above 50%. The EARPD βm,eco

for the mixed cohort and population data can be compared with the EARPD βeco without
additional cohort screening. The relative difference (βm,eco −βeco)/βeco lies between 5-11%
for different screening scenarios as shown in Table 2. Because of these low percentage values
this bias may be neglected.
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Table 2. EARPD βm,eco from a study with mixed
population-based and cohort data.

screening propor- EARPD βm,eco rel. diff. in %
model tion zp 10−4/Gy/PY (βm,eco −βeco)/βeco

random 0.5125 4.450 11
percentile 0.5125 5.555 8
individual 0.5141 6.889 6
settlement 0.5272 7.336 5
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Appendix A. Mean risk for the total study population

Individual risk

For a person j from a settlement i, which has received a dose Di j, we assume an individual
risk

hi j = (1+ηi j)h0,i j +(1+κi j)βDi j. (A.1)

In general the individual screening factors ηi j and κi j could enhance the background risk h0,i j

and the radiation-induced risk βDi j with different magnitude.

Mean risk for one settlement

In a settlement i with Ni persons one obtains the mean risk (and all other settlement means)

h̄i =
1
Ni

∑
j

hi j (A.2)

by summing over all individuals j. The result is

h̄i = h̄0,i +
1
Ni

∑
j

ηi jh0,i j +βD̄i +β
1
Ni

∑
j

κi jDi j

= (1+ η̄i) h̄0,i

(
1+

covIi(η,h0)
(1+ η̄i) h̄0,i

)
+(1+ κ̄i)βD̄i

(
1+

covIi(κ,D)
(1+ κ̄i)D̄i

)
. (A.3)

The intra settlement covariance for exposure and screening (like the analog for background
risk and screening) is defined as

covIi(κ,D) =
1
Ni

∑
j

κi jDi j − κ̄iD̄i. (A.4)

Mean risk for the total study population

To the mean risk for the total study population

〈h〉 =
1

ptot
∑
i

pih̄i (A.5)

each settlement i contributes its own mean risk h̄i. It is weighted by the person years pi = ∆TNi

with the observation time ∆T , the total person years are ptot = ∑ pi. By summing over all
settlements i of Equation (A.3) one obtains the total mean risk

〈h〉 = 〈h0〉+ 〈covI(η,h0)〉+ 1
ptot

∑
i

piη̄ih̄0,i

+ β 〈D〉+β〈covI(κ,D)〉+β
1

ptot
∑
i

piκ̄iD̄i

= 〈h0〉pop +βpop 〈D〉 . (A.6)

with the true mean population-based background risk

〈h0〉pop = (1+ 〈η〉) 〈h0〉
(

1+
〈covI(η,h0)〉+ covS(η̄, h̄0)

(1+ 〈η〉)〈h0〉
)

(A.7)
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and the true mean EARPD

βpop = (1+ 〈κ〉)β
(

1+
〈covI(κ,D)〉+ covS(κ̄, D̄)

(1+ 〈κ〉)〈D〉
)

(A.8)

in the population. The inter settlement covariance

covS(κ̄, D̄) =
1

ptot
∑
i

piκ̄iD̄i −〈κ〉〈D〉 (A.9)

stems from the correlation between exposure and screening on a settlement level. An
analogous definition holds for the inter settlement covariance between background risk and
screening.

Appendix B. Two equations for the two risk parameters h0,eco and βeco

Appendix B.1. General case

In ecologic analyses without screening information the settlement risk

h̄i,eco = h0,eco +βecoD̄i (B.1)

is regressed on the settlement dose D̄i to obtain the ecologic parameters h0,eco and βeco for
background risk and EARPD, respectively.

For the total study population the mean ecologic risk should equal the exact mean risk of
Equation (A.6), i.e. 〈heco〉 = 〈h〉. This condition yields the equation

h0,eco +βeco 〈D〉 = 〈h0〉pop +βpop 〈D〉 . (B.2)

for the risk parameters from ecologic regression and the true population-based parameters
which use the full screening information.

To derive a second equation for h0,eco and βeco we apply the (log-)likelihood function of
Poisson regression

lnLP = −2 ∑
i

(
ni −λi +ni ln

λi

ni

)
(B.3)

with

ni = pih̄i(h̄0,i,β) and λi = pih̄i,eco(h0,eco,βeco). (B.4)

Normally ni denotes the number of observed cases, but now we take this number directly from
Equation (A.3). The expected cases λi are calculated from the ecologic risk h̄i,eco.

One can obtain a second equation by demanding that the derivative of LP with respect to
βeco

−1
2

∂
∂βeco

lnLP(βeco) = ∑
i

(
ni

λi
−1

)
∂

∂βeco
λi = 0. (B.5)

For constant β and h̄0,i

∂
∂βeco

λi = pi (D̄i−〈D〉) (B.6)
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is a settlement-based derivative. The population-based mean of these derivatives vanishes.
With the explicit expressions of h̄i (A.3) and h̄i,eco (B.1) one gets

∑
i

pi
(1+ η̄i) h̄0,i + covIi (η,h0)+β((1+ κ̄i)D̄i + covIi (κ,D))

h0,eco +βecoD̄i

× (D̄i −〈D〉) = 0. (B.7)

We have now established two Equations (B.2) and (B.7) for the ecologic risk parameters
βeco and h0,eco. Thus, an exact numerical calculation of the relative ecologic bias βeco/βpop

(or h0,eco/〈h0〉pop) from the population data is possible. One has to replace h0,eco with the help
of Equation (B.2). Then Equation (B.7) can be solved numerically for βeco with a routine for
root finding like rtbis () from the Numerical Recipes program library (Press et al. 1992).

Equation (B.7) contains implicitly various correlations like those between exposure
and background risk. There exist even more complicated three-point-correlations between
screening, exposure and background risk. They have not been taken into account in the
definitions (A.7) and (A.8) of the true mean population-based risk factors. Therefore, we
will obtain βeco �= βpop in the general case.

Appendix B.2. Special cases

For special cases without any bias we have found analytical expressions for βeco which are
discussed below.

Random screening. If all persons are selected at random for screening the mean settlement
screening factors are all equal, i.e. η̄i = 〈η〉 and κ̄i = 〈κ〉 for all settlements i. Random
selection suppresses all correlations between screening and exposure or screening and
background risk, i.e. covIi = 0 and covS = 0. By demanding h̄0,i = h0 the correlation between
exposure and background risk vanishes. Now Equation (B.7) is solved by

h0,eco = (1+ 〈η〉)h0 and βeco = (1+ 〈κ〉)β. (B.8)

Equal mean settlement screening factors with intra settlement correlations. This situation
is treated by the percentile model for constant background risk h0, where in each settlement
the same percentile zp of children with higher doses are screened. Hence, intra settlement
correlations covIi �= 0 will arise. But they are proportional to κindD̄i. The constant of
proportionality depends on zp but is the same for each settlement. As a consequence, all
mean settlement screening factors are equal and the inter settlement covariance covS(κ̄, D̄)
vanishes. Now the relations

h0,eco = (1+ 〈η〉)h0 and βeco = (1+ 〈κ〉)β
(

1+
〈covI〉

(1+ 〈κ〉)〈D〉
)

(B.9)

solve Equation (B.7).
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Appendix C. Tables with simulation results

All values for the covariances, the cases, and the risk parameters with errors are the averages
over 100 simulation runs. The error bars for the risk parameters are the standard errors
calculated from the parabolic approximation of the likelihood function, i.e. Wald-based
standard errors. For the simulated number of cases nc the error bars are calculated from the
standard deviation over 100 runs. They are consistent with the theoretically expected value of√

nc.
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