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Summary

For two reasons quantitative post-Chernoby! assessment of the thyroid cancer risk from 31|
exposure in children under age 18 at the time of accident has been carried out with spatially
aggregated data. Firstly, individual data has not been available up to now. Secondly, a
large number of individuals can be included in the analysis for a better statistical power.
But aggregation can destroy important individual information. Therefore, the risk estimate
from an ecologic study may be biased, especially in the presence of confounding factors. In
1998 L ubin has investigated such an ecologic bias for lung cancer caused by radon exposure
confounded by smoking. We generalise his approach for the Chernoby! case where enhanced
medical surveillance (or screening) has been identified as the most important confounder of
cancer incidence data. Our investigations were performed with both Monte-Carlo simulations
and analytical calculations, respectively. Based on redlistic dose estimates for 743 Ukrainian
settlements we simulated individual data sets on exposure, screening and health status for
366397 children. To generate the cancer cases, an individual risk model with linear dose
response has been combined with three different screening models. Poisson regression on
a linear model for a mean settlement risk produced an ecologic bias in most cases, when
screening information was neglected. The estimated risk parameters deviate from the true
mean parameters which describe the true risk in the population. The bias is caused by those
correlations between screening and risk factors, which have not been included in the definition
of the true population-based risk. Analytical relations have been derived to calculate the bias
numerically exact from the population data.
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1. Introduction

Recently, a number of studies (Buglova et al. 1996; Jacob et al. 1998; Jacob et al. 1999;
Likhtarev et al. 1999) on the thyroid cancer risk of children exposed to 13!| after the Chernobyl
accident has been performed for contaminated areas of the former Soviet Union. They were
based on aggregate exposure data to increase the number of persons at risk for a better
statistical power. Astakova et al. (1998) have carried out a case-control study in Belarus for
a limited number of individuals. But sufficient individual data for the total study population
isnot (and will probably never be) available. The results from the ecologic studies supported
a linear dose-response relationship and gave estimates of the excess absolute risk per unit
thyroid dose (EARPD). However, Ron et al. (1992) have emphasised that a good control of
possible confounding factors is essential to derive reliable risk estimates. Enhanced thyroid
surveillance (or screening) has been identified as the most important factor, but due to a lack
of information a thorough quantitative assessment was not feasible. This was the motivation
to derive here a methodology for the assessment of possible screening effects on the risk
estimate.

After the Chernobyl accident Belarus and Russia decided to set up yearly medica
surveillance programmes for exposed children. Thus, thyroid cancer incidence may be
enhanced by screening in the form of more frequent medical check-ups, refined examination
methods like thyroid hormone testing or ultrasound imaging. Case reporting to the central
registries has been improved and an enhanced public risk awareness has also contributed
to a higher cancer detection rate. If in a cohort study all members have been examined
with the same examination method screening effects are possible but they are not correlated
to radiation exposure. But in Belarus mobile medical teams have checked children more
thoroughly in highly contaminated regions. In this case a screening factor would be positively
correlated to the thyroid dose. Ongoing research in the Ukraine revea ed significant negative
dose-screening correlations on an oblast level.

A wedlth of information on the limitations of risk estimates from ecologic studies is
available in the epidemiologic literature (Morgenstern 1998; Greenland 2001; Greenland
2002). For long it is known that an ecologic bias of cross-level inference may arise if
risk parameters, which have been produced with aggregate data, are assigned to individuals
(Firebaugh 1978). Parameter estimatesfor linear risk models may depend on the group design
even for un-confounded relations between predictor and outcome variables (Piantadosi et a.
1988). The NCRP (2001) report no. 136 lists several potential weaknesses of ecologic studies
like inadequate use of summary variables as confounders or no control of misclassification.

If a predicting variable like exposure is accompanied by a confounding risk factor,
Piantados (1994) noticed that the covariance between these two variables controls the
ecologic bias. This bias has been further quantified for the problem of lung cancer risk related
to radon exposure confounded by smoking (Lubin 1998; Lubin 2002). The mathematical
structure of this problem is similar to that of thyroid cancer risk from iodine exposure for
children after Chernobyl confounded by screening. Thereis, however, aconceptual difference
because lung cancer can be caused biologically by both radiation exposure and smoking. On
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the other hand screening does not induce cancer but increases the number of thyroid cancer
cases that are reported to the registries.

To assess the screening effect we simulated individual data sets on exposure, screening
and health status for 366397 Ukrainian children. Theindividual thyroid doses were simulated
based on preliminary dose estimates for 743 Ukrainian settlements. Approximate values for
the screening factor are given in Jacob et al. (1999) and the references therein. The cancer
cases were generated from an individual risk model with constant background and a linear
dose response that has been combined with three different screening models.

Poisson regression on the number of simulated cancer cases to a settlement-based (or
ecologic) linear risk model produced a bias in most cases when screening information has
been neglected. We consider the risk parameters of the ecologic model as biased if they
deviate from the true mean risk parameters which could be assigned to the study population
if al individual information on screening and exposure were available. In the Appendix
analytical relations have been derived to calculate this bias numerically exact.

2. Mean settlement risk

Let nc be the total number of thyroid cancer cases found in a study area with a population of
Np individuals at risk during an observation time AT = 10 yr from 1990-99. We assume that
this number can be decomposed into four components

Nc = Non + Nos + Nyn + Nrs. (1

The ngn, spontaneous cases would have been found during the observation time in a situation
without the accident and without enhanced surveillance. The ny, radiation-induced cases
would have become clinically relevant after the accident if the surveillance regime had been
left unchanged. The ngs + s additional cases may be attributed to the extended medical
check-up programmes after 1986.

Motivated by the decomposition of the total number of casesin Equation (1), the risk of
contracting athyroid tumour is expressed as

hij = (14mij)ho + (1+xij)BDij 2

for an individua j in a geographical unit i. From here on this unit is called a settlement
with N; persons at risk. The constant risk factor B would describe the risk in the population
after the accident without any change in the medical surveillance regime. For simplification a
constant background risk hg is applied to the whole study population and possible age and/or
sex dependencies are neglected. The effect of screening influences the recorded incidence
of spontaneous and radiation-induced thyroid tumours in a different way if, for example, a
large number of occult spontaneous cancer cases were detected. Therefore, two individual
screening factors njj and xjj enhance either the spontaneous or the radiation-induced risk.
These factors were zero if the medical surveillance regime had been left as it was before the
accident.

Itisimpossibleto collect individual dataon screening and exposure for more than 300000
exposed children in the Ukraine. However, mean dose valuesfor settlementswill be available
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soon (see Subsection 4.1). Therefore, a treatment of the problem on a settlement level 1ooks
more promising. The corresponding mean risk for a settlement i becomes
hi = (1+mni) ho+ (1+ ;) BD; (1—}-%) (©))

Equation (3) introduces the intra settlement covariance cov,i(x, D) of the radiation screening
factor and the dose. It is derived in Appendix A. Lubin (1998) pointed out that neglecting
covji(x, D) in the regression causes a bias from ill-conducted cross-level inference.

The observed cancer cases were regressed on the mean settlement dose 5. with the mean
settlement risk

I'_1i,eco = hO,eco + Beco[si- (4)

By using ﬁheco instead of h; inthe regression an additional biasenterstherisk analysis, because
Equation (4) ignores any information on confounderslike screening. According to Stidley and
Samet (1994) this bias arises from a model misspecification. Equation (4) constitutes the risk
model that introduces the ecologic bias in the present work.

3. Ecologic bias

If al individual information on screening and exposure were available, the risk parameter
(cov| (k,D)) + covs(k, D))

Boop = (1-+ (B (14 (DD EES ®

would describe the true mean EARPD in the study population. A derivation is given in
Appendix A also for the mean background risk (ho) no,.

The aim of an ecologic study is to produce an estimate for 3 pop (and (ho) pop) tO quantify
the number of excess thyroid cancer cases after the accident in the exposed population. In
the event of another accident they will help to predict the number of expected excess cases
elsawhere. This will facilitate the planning of remediation measures to provide adequate
medical treatment.

If al individuals were selected at random from the population, no correlations between
exposure to 131 and screening would occur. For this special case (Appendix B.2) an ecologic
regression with Equation (4) will yield Beco as the correct estimate for 3 pop.

In general, one cannot exclude possible correlations of screening, exposure and
background risk either within settlements or between settlements. Among others, they
produce the covariances (cov|) (A.4) and covs (A.9), respectively. Now the ecologic
regression will give an EARPD Beco # Bpop in most cases.

The EARPD (0, would quantify the true population-based risk under the very unlikely
condition, that all individual information on screening and exposure were available. The
EARPD Beco from ecologic regression may deviate from 3 p0p and therefore cause the ecologic
bias in the post-Chernobyl risk assessment of thyroid cancer.

Lubin (1998) used a different definition of the ecologic bias which he attributed to the
cross-level inference from the individual to the aggregate level. In our case both Beco and Bpop
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are defined on the level of the total study population. Nevertheless, in both applications the
bias is caused by correlations between the risk factors and a confounding variable.

4. Materialsand M ethods

To simulate population datafor radiation exposure, enhanced medical surveillance and health
status three stages are necessary as shown in Figure 1. They are described in turn in the next
three subsections.

individual individual
dose screening
factor

stratification

individual
health
status

Poisson
regression

population-
based

risk
estimates

stratification numerically exact solution |—>

Figure 1. Simulation scheme for one population data set, risk estimates are obtained (after
stratification) either with Poisson regression on the number of simulated cases or from a
numerically exact solution; to gain accuracy for the risk estimates this scheme is repeated
100 times

4.1. Individual dose simulation

Individual thyroid doses have been simulated for 366397 Ukrainian children in 18 birth year
groups from 1968-85 whose place of residence was known for 743 settlementsin 1986 (USSR
1991). The sizesranged from the two largest cities of Zhitomir and Chernigov with more than
80000 children to small villageswith below 100 children. The study popul ation comes mostly
from rural areas without the city of Kiev. For simplification we did not distinguish between
sexes. For each birth year group of a settlement we assumed a lognormal dose distribution
with a geometric standard deviation (GSD) of 2.2. The geometric means are the unpublished
preliminary estimates of the Ukrainian Radiation Protection I nstitute which are produced in an
ongoing research project together with the GSF - Institute of Radiation Protection. They are
always decreasing with age due to the higher mass of the thyroid gland. Thus, the individual
doses were drawn from 18 lognormal thyroid dose distributions in each settlement. The 18
dose means for the birth year groups can be aggregated to a settlement dose mean Di. The
743 arithmetic settlement dose means are shown in Figure 2 (top). The mean dose per person
and the measured maximal dose were approx. 173 mGy and 10000 mGy, respectively. Figure
2 (bottom) depicts atypical simulated cumulative dose distribution.

4.2. Screening models with correlation to exposure

Selecting realistic models for the correlation between screening and exposure is a difficult
task. Thus, our models have been invented mainly for didactic reasons. For simplification we
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Figure2. Top: dose meansfor 743 Ukrainian settlements; bottom: simulated cumulative dose
distribution for 366397 individuals with arithmetic mean 173 mGy and arithmetic standard
deviation 515 mGy
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chose the same individual screening factor
Nij = Kij (6)
for the spontaneous and the radiation dependent part of the individual risk from Equation (2).

It should be noted, however, that in the Chicago hospital study of Ron et al. (1992) (n) was
larger than (x).

Screening above an individual dose level: individual model. If the thyroid doses for al
children were known one could fix a population-wide level Dgypn for the individual dose.
Children with a dose Djj > Dgrn Would enter the medical check-up programme. The
proportion of screened children can then be taken from Figure 2 (bottom). This model is
called the individual (screening) model. It produces correlations within a settlement and
between settlements, i.e. cov,;, covs # 0.

Screening above a settlement dose level: settlement model.  Inamorerealistic scenario only
mean doses for settlements were known (Figure 2, top). Now Dy, denotes the settlement
doselevel and all children from asettlement with 5. > Dgrn Would be screened, irrespectively
of their individual doses. For this settlement (screening) model correlations only appear
between settlements but not within a settlement, i.e. cov|; = 0, covs # 0.

Screening of a fixed proportion from a settlement: percentile model. If in each settlement
the same percentile z, of children with the highest doses are screened, only intra settlement
correlations arise, i.e. cov)j # 0. This percentile (screening) model seems contrived but
it provides valuable insight because there is no inter settlement correlation, i.e. covs = 0.
Lubin (2002) used asimilar model of proportions of exposed individual sto describe smoking
information.
For anindividual j in a settlement i we set

1 : ifitisscreened
0 : otherwise.

Kij = Kind0jj Wwith 6 = { @)

The factor «jng is used to scale the screening strength and has been set here mostly to one
or two. For the Chernobyl case Jacob et a. (1999) have estimated population-wide values
(k) = Kingzp Of Oto 4 in Belarus. Their factor Sequals 1+ (k) in this paper. Ron et al. (1992)
report a maximal factor of 11 for a cohort of patientsin a screening programme at a Chicago
hospital.

Figure 3 shows simulated covariances for the three screening models as a function of the
proportion (or percentile) of screened individuals z,. For the individual and the settlement
screening model this proportion is determined by the corresponding dose level D . Specific
values are given in Tables C1, C2 and C3 in Appendix C. All covariance curves show a
similar behaviour. If for high dose |levels the proportion z, is small, the covariances are also
small because of the low number of screened persons. The curves reach their maximafor zp
between 0.1 and 0.5 and tend to zero if all individuals are screened. The Equations (A.4) and
(A.9) show that the covariances are proportional to the individual screening factor King.
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Figure 3. Simulated data points for the covariance between dose D and screening factor k
with kjng = 1, mean intra settlement covariance (cov,) (——-) and inter settlement covariance
covs ( ) for the percentile (<), settlement (O), and individual (O ) screening model, lines
areonly guidesto the eye

4.3. Smulation of health status and Poisson regression

After each individual has been assigned a dose and a screening factor the tumour risk is
fully defined and the health status can be determined. We compute the survival probability
Yij = exp (—AT hi j) from the risk model of Table 1 and compare it with a random number
Wy which is evenly distributed between 0 and 1. If W¥jj < ¥\, atumour case is assigned to
the individual. Otherwise the tumour would appear after the end of the observation period.
Competing risks have been neglected because they are very small for persons younger than
32 years of age. After these three simulation steps of Figure 1 a population data set for
366397 individuals is complete. The input parameter for the smulations are summarised
in Table 1. For the situation without screening (kjnq = 0) approx. 160 cases are generated
which corresponds to the number of actually recorded cases in the study population. Thus
the number of cases exceeds the recorded number when we introduce screening in our
simulations.

To prepare the data for Poisson regression it must be stratified (or aggregated) on a
settlement level. The means for dose and screening factor in each of the 743 settlements
have to be calculated.

The number of expected cases in a settlement i is Aj = pj r_li,eco(hqeco, Beco) With the
mean ecologic settlement risk from Equation (4) weighted by the person years p; = ATN;.
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Table 1. Simulation input parameter.

Name Symbol Vaue

EARPD B 2-10~4GyIPY
background risk ho 1-10-5PY
screening factor Kind land 2

individual risk hij = (1+Kindeij)(hO+BDij>

The parameters hg eco and Peco are estimated by minimising the (log-)likelihood function

Ian:—Zzi‘ <ni—?q+niln%:) (8)

where n; cases have been simulated (or observed) in a settlement. The MINUIT package of
CERNLIB (James 1994) is used for minimisation.

By going through all the steps of the simulation scheme from Figure 1, only one set
of risk parameter estimates is produced. To improve the accuracy of the risk estimates, 100
population data sets were simulated with the same input parameters. The point estimate and
error bar for each regression parameter isthen obtained by averaging over 100 runs (Figure 4).

5. Results

The ssimulations were done for the individual, settlement and percentile screening models
using Condition (7) for the screening factor. The resultswith xj,g = 2 are pooled in the Tables
C1, C2 and C3 for three series of runs with different screening dose levels D, OF proportions
z, of screened individuals, respectively.

In Figure 4 100 point estimates for the ecologic EARPD Bec, from Poisson regression
on the number of simulated cases are shown for the settlement model with dose level
Dsern = 50 mGy and individual screening factor xjng = 1. The average over 100 simulation
runs meets the numericaly exact value very well. For comparison the mean population-
based EARPD Bpop Of Equation (5) is aso given. In this example, the ecologic EARPD
overestimates the mean population-based EARPD by a factor of 1.17.

In the percentile model the simulation results yielded no bias (Table C3). This has also
been proven with an analytical calculation in Appendix B.2. The reason is the specia choice
of the settlement correlations, which are all proportional to the mean settlement dose.

Figure 5 compares the ecologic EARPD Beco With the true EARPD Bpop as afunction of
the fraction z,, of screened individualsfor xing = 1, 2. Only the curvesfor theindividual model
and the percentile model are shown. If z, = 0 the incidence is not increased by screening
and the 'naked’ EARPD B can be estimated unbiased. For z, = 1 the EARPD e, equals
Bpop = (14 xind)P because the covariances vanish.

For both models the EARPD B pop increases monotonously with z,. However, the values
for Beco reach maxima between 0.5 < z, < 0.6. These maxima do not coincide with the
maximal covariances which appear for z, < 0.4. They are formed by two contradicting trends
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Figure 4. Point estimates (® ) from Poisson regression on the number of simulated cases
for the ecologic EARPD Beco and the settlement screening model with dose level Dy =
50 mGy and individual screening factor kg = 1, average over 100 points with standard error
on the left, exact ecologic Bego = 4.52- 10~ 4/Gy/PY (------ ) calculated from Equation (B.7);
true mean population-based EARPD B pop = 3.87- 10~4/Gy/PY (——-); B = 2- 10-4/Gy/PY
without screening (——) was simulation input

of falling covariances and rising mean screening factors (k). The bias increases with rising
Kind- It ishigher in the settlement model than in the individual model.

The background risk (ho) o, is @linear function of the mean screening factor (i) in the
percentile model (Table C3). For kjng = 1 it remains always positive in the individua model
and in the settlement model. But for kjnq = 2 meaningless negative values can appear (Tables
C1 and C2) which would lead to rejection of the underlying risk model in areal analysis.

With the Equations (B.2) and (B.7) we can calculate the relative bias numerically exact
from the simulated population data. For all three screening models we found that the model-
specific constant
Beco—B(1+ (K) ©

() B
depends only on the proportion of screened individuals z, but not on the screening factor King.
With this constant the relative bias for high values of «jng approaches the upper bound

Beco 1+Cwm(2zp)

N <COV( in :1)>+COV (King=1) ~
Bpop 1+ I (Kind o) s(Kind

It acquires a maximum for small z,. For z, between 2-3% the biasis 1.6 for the individual
mode!l and 1.8 for the settlement model.

Cwm(zp) =

(10)
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6. Discussion

We have investigated the effect of enhanced surveillance as a confounder on the risk estimate
from ecologic studies. Based on aggregate post-Chernobyl data of radiation exposure to
the thyroid of Ukrainian children, we have performed both Monte-Carlo smulations and
analytical calculations. With a model of linear radiation-induced risk, which was combined
with three different models for the correlation between exposure and screening, grouped
population data with cancer cases have been generated. A fit on a settlement level with a
linear risk model, that neglects screening information, produced an ecologic bias both for
the background risk and the EARPD in most cases. However, with the percentile model we
showed that the EARPD can be estimated unbiased even in the presence of correlations.

With analytical calculationsthe bias can be obtained in a simpler and more accurate way.
We have shown that Beco (and hoeco) can be calculated numerically by using the Equations
(B.2) and (B.7). These equations establish the relations between the individual and ecologic
risk parameters in the general case.

By comparing the ecologic risk parameter Beco With the mean population-based risk
parameter Bpop Of Equation (5) we assessed the range of a possible bias. For our screening
modelswe simulated a maximal factor of 1.3 for the relative bias of the EARPD. It occurs for
intermediate values of z, and for kjng = 2. Inreality kjng canbe much higher (Ron et al. 1992).
In this case the relative bias increases asymptotically until it reaches an upper bound which
stays well below the factor of two. This moderate valueis partly caused by the assumption of
aconstant background risk. Uncertain dose estimates or migration from the original places of
residence constitute additional potential for bias.

In reality the dose-screening correlations are expected to be weaker and will not follow
strictly our didactic models. Moreover, screening scenarios are imaginable where the relative
ecologic biasis smaller than one. Thisisthe case if intensive screening took place in larger
citieswith low mean doses. Now screening and exposure are negatively correlated.

Finally, we can apply our methodology to assess the risk estimates for another hypo-
thetical case. To date a cohort study with more than ten thousand members is carried out
in the Ukraine (Tronko et al. 2003). Cases from this study will enter the cancer registry
which will also be the data base of a future aggregate study. By mixing the cohort data and
popul ation-based aggregate dataan additional biaswill arise. We are ableto estimate the order
of magnitude of this bias by using Equations (B.2) and (B.7). We assume that 2.5% or 9160
children of our study population are included in this cohort. They are selected at random with
atypical screening factor of 10. If approx. one half of the study population have been screened
in conventional check-up programmes with a screening factor kjng = 2, the proportion z,, of
screened individuals with the cohort included is only sightly above 50%. The EARPD B eco
for the mixed cohort and population data can be compared with the EARPD Beco Without
additional cohort screening. The relative difference (Bmeco — Peco)/Beco li€s between 5-11%
for different screening scenarios as shown in Table 2. Because of these low percentage values
this bias may be neglected.
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Table 2. EARPD B eco from a study with mixed
popul ation-based and cohort data.

screening  propor-  EARPD Bmeco rel. diff. in %
model tionz,  10°%Gy/PY  (Bmeco— Beco)/Beco

random  0.5125 4.450 11
percentile  0.5125 5.555 8
individua  0.5141 6.889 6
settlement  0.5272 7.336 5
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Appendix A. Mean risk for the total study population

Individual risk

For a person j from a settlement i, which has received a dose D, we assume an individual
risk
hij = (14mij)ho,ij + (1+xij)BDij. (A.1)

In general the individual screening factorsm;j and k;j could enhance the background risk hg j
and the radiation-induced risk BDj; with different magnitude.

Mean risk for one settlement
In asettlement i with N; persons one obtains the mean risk (and all other settlement means)
— 1
hi = WZhij (A.2)
b
by summing over al individuals j. Theresultis
— = 1 — 1
hi = hoji+ = > Mijhoij +BDi + B > xijDij
b ]

_ —\ covii(n, ho) —\ al covji(x, D)
= (1+T1|)ho,| <1+ m) + (14 ;) BD; <1+ m) . (A.3)

The intra settlement covariance for exposure and screening (like the analog for background
risk and screening) is defined as

1 -
zKijDij —xiD;. (A.4)
J

covi(x,D) = N
| £

Mean risk for the total study population

To the mean risk for the total study population
1 —
hy = — ihj A5
(h) ptotzi:pl [ (A.5)

each settlement i contributesits own meanrisk h;. Itisweighted by the personyears pi = ATN;
with the observation time AT, the total person years are piot = >, pi- By summing over all
settlementsi of Equation (A.3) one obtains the total mean risk

(h) = (ho) + (cov <n,ho>>+pt—1ot;pimﬁo,i

+ B (D) B (covi(x,D)) + B 5 3. picD

= (o) pop + Bpop (D) - (A.6)
with the true mean popul ation-based background risk

(o} oy = (1-+ () (ho) (1+

(covi(n, ho)) + covs(n, ho) )

@+ ) (ho) (A7)
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and the true mean EARPD

_ (cov (k,D)) + covs(k, D)
Boop = (1-+ () p (14 DI L ENSD)) (n8
in the population. The inter settlement covariance
covs(k, D) = —z pikiD; — (k) (D) (A.9)

stems from the correlation between exposure and screening on a settlement level. An
analogous definition holds for the inter settlement covariance between background risk and
screening.

Appendix B. Two equationsfor the two risk parameters hp eco and Peco

Appendix B.1. General case

In ecologic analyses without screening information the settlement risk
I’_‘i,e(:o = hO,eco + Becolsi (B-]-)

is regressed on the settlement dose D; to obtain the ecol ogic parameters hg eco and Peco for
background risk and EARPD, respectively.

For the total study population the mean ecologic risk should equal the exact mean risk of
Equation (A.6), i.e. (heco) = (h). This condition yields the equation

ho,eco + Beco (D) = (ho) pop + Bpop (D) - (B.2)

for the risk parameters from ecologic regression and the true population-based parameters
which use the full screening information.

To derive a second equation for hg eco and Beco We apply the (log-)likelihood function of
Poisson regression

Ian:—ZZ(ni—kiJrniln%) (B.3)
i i
with

ni = pihi(hoj,B) and A = pihi eco(ho.eco, Beco)- (B.4)

Normally nj denotes the number of observed cases, but now we take this number directly from
Equation (A.3). The expected cases A; are calculated from the ecologic risk hj eco.
One can obtain a second equation by demanding that the derivative of Lp with respect to

B eco

1 0 d
2 9P INLp(Beco) = Z (xl - 1) aBeCOx 0. (B:5)
For constant B and ho,i
% 3= pi(B; - (D)) (8.6

IPeco
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is a settlement-based derivative. The population-based mean of these derivatives vanishes.
With the explicit expressions of hj (A.3) and hj g0 (B.1) one gets

Y (1+Mi) hoi + covii (1, o) + B ((1+ ) Di + covii (x, D))
i 3 hO,eco+BecoDi
x (Di— (D)) =0. (B.7)

We have now established two Equations (B.2) and (B.7) for the ecologic risk parameters
Beco @d hg eco. Thus, an exact numerical calculation of the relative ecologic bias Beco/Bpop
(or ho,eco/ (o) pop) from the population datais possible. One hasto replace ho eco With the help
of Equation (B.2). Then Equation (B.7) can be solved numerically for Beco With aroutine for
root finding like rtbis () from the Numerical Recipes program library (Press et al. 1992).

Equation (B.7) contains implicitly various correlations like those between exposure
and background risk. There exist even more complicated three-point-correlations between
screening, exposure and background risk. They have not been taken into account in the
definitions (A.7) and (A.8) of the true mean population-based risk factors. Therefore, we
will obtain Beco # Bpop iN the general case.

Appendix B.2. Special cases

For specia cases without any bias we have found analytical expressions for Bec, Which are
discussed below.

Random screening.  If all persons are selected at random for screening the mean settlement
screening factors are all equal, i.e. My = (n) and x; = (x) for al settlementsi. Random
selection suppresses al correlations between screening and exposure or screening and
background risk, i.e. cov,j = 0 and covs = 0. By demanding HOJ = hg the correlation between
exposure and background risk vanishes. Now Equation (B.7) is solved by

Noeco = (L+(M))ho  and  Beco = (1+ (x))B. (B.8)

Equal mean settlement screening factors with intra settlement correlations. This situation
is treated by the percentile model for constant background risk hg, where in each settlement
the same percentile z, of children with higher doses are screened. Hence, intra settlement
correlations cov;i # 0 will arise. But they are proportional to kijngDi. The constant of
proportionality depends on zp but is the same for each settlement. As a consequence, all
mean settlement screening factors are equal and the inter settlement covariance covs(k, D)
vanishes. Now the relations

oo = (14 (Mo and P = (14+-0)B (14 ) @9

’ (1+(x)) (D)

solve Equation (B.7).
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Appendix C. Tableswith simulation results

All values for the covariances, the cases, and the risk parameters with errors are the averages
over 100 simulation runs. The error bars for the risk parameters are the standard errors
calculated from the parabolic approximation of the likelihood function, i.e. Wald-based
standard errors. For the simulated number of cases n. the error bars are calculated from the
standard deviation over 100 runs. They are consistent with the theoretically expected value of

/M.
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