Procedure for determining the specific activities of plutonium isotopes in fish by alpha spectrometry

G-α-SPEKT-FISCH-01

Authors:

M.-O. Aust

S.-J. Reyelt

G. Kanisch

Federal coordinating office for fish and fishery products, crustacean, shell fish and aquatic plants

(Leitstelle für Fisch und Fischereierzeugnisse, Krustentiere, Schalentiere, Meereswasserpflanzen)

Procedure for determining the specific activities of plutonium isotopes in fish by alpha spectrometry

1 Scope

The procedure described in the following is suitable for determining specific activities of the plutonium isotopes Pu-238 and Pu-(239+240) less than 1 mBq·kg⁻¹ fresh mass (FM) in fish flesh and whole fish.

The procedure is used in the IMIS-routine programme [1] and for radioecological research. It is very time consuming and requires experienced laboratory staff.

2 Sampling

For sampling it is referred to Procedure G- γ -SPEKT-FISCH-01.

3 Analysis

3.1 Principle of the procedure

The sample material is ashed according to Procedure G- γ -SPEKT-FISCH-01.

For determining specific activities of plutonium isotopes, a defined amount of Pu-242 tracer is added. If specific activities of additional radionuclides have to be analysed, corresponding tracers such as americium-243 (Am-243) as internal standard or strontium-85 (Sr-85) for the determination of the chemical yield of strontium are applied.

Afterwards, the ash is leached with nitric acid. The following liquid-liquid-extraction with tri-n-octylphosphineoxide (TOPO) dissolved in cyclohexane cleans the extract before uranium occurring in the sample is separated from plutonium via anion exchange.

The plutonium isotopes are electrochemically deposited on stainless steel plates and their activities are determined using a low-level alpha spectrometer.

Note:

For quality control, the analysis of certified standard reference material from marine environment, e. g. available from the International Atomic Energy Agency (IAEA), is recommended.

3.2 Sample preparation

Samples are prepared according to Procedure G- γ -SPEKT-FISCH-01. The separation procedure described in the following is designed for processing a maximum of 100 g of ash; typically, 50 g of fish ash are used. In addition, a blank sample is processed together with each sample set, from which a blank counting source is prepared.

Before the analysis, all glassware is prepared according to Section 8.3.1 and the anion extraction column according to Section 8.3.2.

3.2.1 Sample preparation from fish ash

- **3.2.1.1** The ash is processed in a muffle furnace at a maximum temperature of 500 °C for up to 48 hours. Directly after cooling down, the ash is determined. If not directly processed, the ash is stored in plastic bottles.
- **3.2.1.2** The entire ash has to be dried again at 110°C for one hour before starting the analysis. Afterwards, it can be stored in a desiccator for a maximum of twelve hours.

Note:

Ashes are very hygroscopic. Without using a desiccator or at too long storing, the calculated ratio between fresh mass and ash mass cannot be used anymore if aliquots of the ash will be used for analysis. Therefore, the ash has to be dried again according to Step 3.2.1.2.

- **3.2.1.3** 50 g dry fish ash are weighed into a 600 ml beaker.
- **3.2.1.4** A known activity of Pu-242 is added as internal standard; typically, around 0,05 Bq are used.

Note:

If the specific activity of Am-241 has to be determined from the same sample, a known activity of about 0,05 Bq Am-243 needs to be added.

3.2.1.5 300 ml nitric acid (8 mol·l⁻¹) are added to the ash. The solution is heated on a magnetic hot plate stirrer and kept slightly boiling for 30 minutes while stirring.

3.2.2 Sample preparation after strontium separation

- **3.2.2.1** If strontium-90 (Sr-90) and plutonium isotopes are to be determined from the same sample, the combined precipitates of the two acetate and the iron hydroxide precipitation from Section 3.3 of the Procedure G-Sr-90-FISCH-02 are dissolved in 300 ml nitric acid (8 mol·l⁻¹).
- **3.2.2.2** The solution is heated on a magnetic hot plate stirrer and kept slightly boiling for 30 minutes while stirring.

Further steps of the procedure are described in Section 3.3 of this procedure.

3.3 Radiochemical separation

3.3.1 While stirring, 5 ml sodium nitrite solution 1 (7,25 mol· I^{-1}) are added to the hot solution.

Note:

The addition of sodium nitrite leads to a strong reaction with formation of nitrous fumes! Sodium nitrite is used for the chemical reduction of plutonium from oxidation state VI to oxidation state IV.

3.3.2 After cooling down to room temperature, the solution is transferred to a centrifuge beaker. Afterwards it is centrifuged at about the 3160times the acceleration of gravity $(3160 \ q)$ for 30 minutes.

Note:

If the centrifuge only allows the adaption of rotor speed in the unit of rotations per minute, the user manual has to be checked for the correct conversion.

- **3.3.3** The supernatant is transferred into a 1000 ml beaker and is kept closed until further processing.
- **3.3.4** The remaining precipitate is transferred to a 600 ml beaker with little nitric acid $(8 \text{ mol} \cdot l^{-1})$.
- **3.3.5** The volume of the solution is increased to 300 ml by addition of nitric acid $(8 \text{ mol} \cdot l^{-1})$.

Note:

Caution: The formation of nitrous fumes is to be expected.

- **3.3.6** The solution is heated on a magnetic hot plate stirrer while stirring until no nitrous fumes are released.
- **3.3.7** Another 5 ml sodium nitrite solution 1 (7,25 mol· l^{-1}) are added under stirring.
- **3.3.8** After cooling down to room temperature, the solution is centrifuged according to Step 3.3.2.
- **3.3.9** The centrifugate of Step 3.3.8 is combined with the centrifugate of Step 3.3.3 and transferred to a 1000 ml separating funnel. The precipitate is discarded.

Note:

If the solution is processed directly, plutonium is still in the oxidation state IV. If not, the oxidation state IV must be readjusted with additional 5 ml sodium nitrite solution 1 (7,25 mol·l-¹) before starting Step 3.3.10.

- **3.3.10** Plutonium is extracted from the nitric acid solution using 25 ml TOPO solution dissolved in cyclohexane (0,2 mol·l- 1), which is added to the solution inside the separating funnel. Afterwards, the 1000 ml separating funnel is shaken for 15 minutes.
- **3.3.11** The nitric acid phase (lower phase) is drained into a 1000 ml beaker, while the organic phase (upper phase) is transferred into a 250 ml separating funnel.
- **3.3.12** The nitric acid phase of Step 3.3.11 and 25 ml TOPO solution dissolved in cyclohexane $(0.2 \text{ mol} \cdot \text{l}^{-1})$ are transferred into the 1000 ml separating funnel used in Step 3.3.10. The separating funnel is shaken for another 15 minutes.
- **3.3.13** The nitric acid phase is drained into a 1000 ml beaker, kept closed and stored, if the specific Am-241 activity is also to be analysed according to Procedure $G-\alpha$ -SPEKT-Fisch-02. Otherwise, the nitric acid phase is discarded.
- **3.3.14** The organic phase of Step 3.3.12 is transferred in the 250 ml separating funnel containing the organic phase from Step 3.3.11. The combined organic phases are washed

three times for five minutes after addition of 50 ml hydrochloric acid (3 mol·l⁻¹), each. The washing solutions (lower phases) are discarded.

- **3.3.15** For back-extraction of plutonium from the organic phase, 25 ml ascorbic acid $(0.5 \text{ mol} \cdot \text{l}^{-1})$ in hydrochloric acid $(1 \text{ mol} \cdot \text{l}^{-1})$ are added into the separating funnel. The separating funnel is shaken for 15 minutes.
- **3.3.16** The ascorbic acid solution (lower phase) is transferred to a 250 ml beaker.
- **3.3.17** Step 3.3.15 is repeated once.
- **3.3.18** This ascorbic acid solution is combined with the solution of Step 3.3.16 The organic phase is discarded.
- **3.3.19** The ascorbic acid solution is shaken three times for two minutes after addition of 30 ml cyclohexane to the 250 ml separating funnel, each, to remove remaining TOPO from the aqueous phase. The organic phase (upper phase) is discarded after each shaking process.
- **3.3.20** The ascorbic acid solution is transferred to the 250 ml beaker and evaporated to dryness on a sand bath at a temperature of 60 °C to 80 °C overnight.
- **3.3.21** In order to ash the dark residue, the beaker is placed inside a muffle furnace and the following temperature program is started: Heat to 200 °C within two hours, hold the temperature for two hours, raise the temperature to 450 °C within two hours, hold this temperature for 60 hours and let the furnace cool down, afterwards.
- **3.3.22** After ashing, the dark-grey residue is vaporized to dryness on a sand bath with 2 ml to 5 ml concentrated sulfuric acid (18 mol·l⁻¹) and 5 ml to 10 ml concentrated nitric acid (14,4 mol·l⁻¹). This process is repeated until the residue is considerably lighter coloured und the colour does not change any more.
- **3.3.23** The residues is dissolved in 50 ml nitric acid (8 mol·l⁻¹), and the solution is stirred on a magnetic hot plate stirrer at 50 °C to 70 °C. Afterwards, 0,25 ml sodium nitrite solution 2 (1,74 mol·l⁻¹) are added and stirred for another 15 minutes.
- **3.3.24** Subsequently, the beaker with the solution is placed within an ice-bath and cooled down to room temperature.
- **3.3.25** The cooled solution is loaded on a prepared anion exchange column (see Section 8.3.2) and is percolated through it at a velocity of 1 ml per minute to 2 ml per minute.
- **3.3.26** After the solution has passed through, the column is rinsed with 100 ml of nitric acid (8 mol·l⁻¹) followed by 150 ml hydrochloric acid (9 mol·l⁻¹). The rinsing solutions are discarded.
- **3.3.27** The plutonium adsorbed to the column material is eluted into a crystallizing dish using 10 ml of a mixed solution of hydrocloric acid (0,36 mol·l $^{-1}$) and hydrofluoric acid (0,01 mol·l $^{-1}$) at a velocity of 1 ml per minute.

3.3.28 The eluate is mixed with 1 ml hydrochloric acid (12,1 mol·l $^{-1}$) and evaporated to dryness at 100 °C to 120 °C on a sand bath.

Note:

There should be no visible residues, because plutonium is present in carrier-free form. However, if there are still residues visible, e. g. particles of anion exchange resin, the sample is repeatedly vaporized with 2 ml concentrated hydrochloric acid (12,1 mol·l⁻¹) and 1 ml concentrated nitric acid (14,4 mol·l⁻¹) until no residue is visible any more.

3.4 Preparation of the counting sources

The electrodeposition apparatus and the stainless steel disks required for preparation of the counting sources are pre-treated according to Section 8.3.3.

- **3.4.1** The dry residue in the crystallizing dish is dissolved in 0.4 ml hydrochloric acid $(4 \text{ mol} \cdot l^{-1})$. The solution is transferred quantitatively into a prepared electrolysis vessel.
- **3.4.2** Afterwards, the crystallizing dish is washed three times with 1 ml ammonium oxalate solution (0,32 mol·l⁻¹) and once with 0,6 ml distilled water. The washing solutions are combined with the plutonium solution inside the electrolysis vessel.
- **3.4.3** The plutonium is electrodeposited on the stainless steel disk over a duration of four hours at a constant current of 300 mA. The electrolysis vessel (see Section 8.2.2, Figure 1) is covered with a single bulb condenser to recover evaporated solution.
- **3.4.4** Before the current is switched off, 1 ml ammonia solution (13,4 mol·l⁻¹) is added and the electrodeposition is continued for 1 minute.
- **3.4.5** The solution is discarded, the current is switched off, afterwards.
- **3.4.6** The platinum electrode is removed and washed with distilled water. Afterwards, it is stored in nitric acid $(14,4 \text{ mol} \cdot l^{-1})$.
- **3.4.7** Finally, the electrolysis vessel containing the counting source is washed with slight ammonia-containing water (pH 8).
- **3.4.8** The counting source is removed from the electrodeposition apparatus and thoroughly washed with slight ammonia-containing water (pH 8), first, followed by ethanol. Afterwards, the counting source is dried on a hot plate.

4 Measuring the activity

4.1 General

Fundamentals of alpha spectrometry, such as calibration, measurement and evaluation of results are described in the General Chapter α -SPEKT/GRUNDL of this Procedures' Manual [2].

Considering the estimated low activities of plutonium isotopes in the IMIS routine mode, a distance of 1 mm between counting source and detector is recommended. The lines of Pu-239 and Pu-240 are very close in the pulse height spectrum and overlap, so only the sum of their activities is determined.

Due to the low estimated activities in the analysed samples, measurement durations of several days up to three weeks are required. The estimated specific activity of Pu-(239+240) is considerably less than 1 mBq·kg⁻¹ fresh mass. The activity ratio of Pu-238 and Pu-(239+240) range between 0,04 in fish from limnic waters and up to 0,20 in fish from the North Sea.

4.2 Background and blanks

The background in the respective peak areas is detected by measurement of blank counting sources. These usually have impulse rates that differ only slightly from the background. Further information can be found in the General Chapter RAD-CHEM/GRUNDL of this Procedures' Manual [3].

4.3 Calibration

The energy calibration of the regions of interest is carried out with sources whose nuclide composition is known.

To determine the detection efficiency of the detector, the counting yields are determined with calibration sources of known activity traceable to national primary standards. The counting yields are considered constant in the energy range of interest.

4.4 Measurement

The duration of measurement is individually adapted to the expected activity and is usually one week for routine measurements. The counting source is measured at the same distance to the detector as the calibration source and blank counting source.

5 Calculation of the results

5.1 Output quantity

The calculation of the specific activities of Pu-(239+240) and Pu-238 with reference to the fresh mass (FM) is calculated according to Equation (1)

$$a_{\rm r} = \varphi \cdot R_{\rm n,r} = \frac{A_{\rm Tr}}{m_{\rm A} \cdot q_{\rm F}} \cdot \frac{p_{\alpha,\rm Tr}}{p_{\alpha,\rm r}} \cdot \frac{f_1 \cdot f_3}{R_{\rm n,Tr}} \cdot \left(R_{\rm g,r} - R_{\rm 0,r} - R_{\rm n,BL,r} \right) \tag{1}$$

with the auxiliary Equations (2) to (6) for the calculation of the procedural calibration factor and the net count rates in the selected regions of interest in the pulse height spectrum:

$$R_{\rm n,Tr} = R_{\rm g,Tr} - R_{\rm 0,Tr} - R_{\rm n,BL,Tr}$$
 (2)

$$R_{\text{n.BL.r}} = A_{\text{BL.r}} \cdot \varepsilon \cdot p_{\alpha,r} \tag{3}$$

$$R_{\rm n,BL,Tr} = A_{\rm BL,Tr} \cdot \varepsilon \cdot p_{\alpha,Tr} \tag{4}$$

$$f_1 = e^{\lambda_{\Gamma} \cdot t_{A}} \tag{5}$$

$$f_3 = e^{-\lambda_{\rm Tr} \cdot t_{\rm Tr}} \tag{6}$$

In the Equations (1) to (6) are:

 $a_{\rm r}$ specific activity of plutonium isotope r, related to fresh mass, in Bq·kq⁻¹;

 $A_{\rm Tr}$ added activity of the Pu-242 tracer referenced to the calibration of the tracer solution, in Bq;

 $A_{\rm BL,r}$ activity of the plutonium isotope r in the blank counting source, in Bq;

 $A_{\rm BL,Tr}$ activity of the Pu-242-tracer in the blank counting source, in Bg;

 f_1 correction factor for the decay of the activity of the plutonium isotope r between sampling and beginning of measurement:

 f_3 correction factor for the decay of the activity of the Pu-242-tracer between calibration of the tracer solution and beginning of measurement;

 $m_{\rm A}$ mass of the ash used for analysis, in kg;

 $p_{\alpha,r}$ sum of the emission intensities of the alpha lines of the plutonium isotope r;

 $p_{\alpha,Tr}$ sum of the emission intensities of the alpha lines of the Pu-242 tracer;

 $q_{\rm F}$ ratio of fresh mass to ash mass:

 $R_{\rm n,r}$ net count rate of the plutonium isotope r, in s⁻¹;

 $R_{\rm g,r}$ gross count rate of the plutonium isotope r, in s⁻¹;

 $R_{0,r}$ background count rate in the alpha line of the plutonium isotope r, in s⁻¹;

 $R_{n,BL,r}$ net count rate in the alpha line of the plutonium isotope r in the blank counting source, in s⁻¹;

 $R_{\rm n,Tr}$ net count rate of the Pu-242 tracer, in s⁻¹;

 $R_{\rm g,Tr}$ gross count rate of the Pu-242 tracer, in s⁻¹;

 $R_{0,Tr}$ background count rate in the alpha line of the Pu-242 tracer, in s⁻¹;

 $R_{\rm n,BL,Tr}$ net count rate in the alpha line of the Pu-242 tracer in the blank counting source, in s⁻¹;

 $t_{\rm A}$ time period between sampling and beginning of measurement, in s;

 t_{Tr} time period between calibration of the tracer solution and beginning of the measurement, in s;

 ε detection efficiency of the measuring system, in Bq⁻¹·s⁻¹;

 $\lambda_{\rm r}$ decay constant of the plutonium isotope r, in s⁻¹;

 $\lambda_{\rm Tr}$ decay constant of the Pu-242 tracer, in s⁻¹;

 φ procedural calibration factor, in Bq·kg⁻¹·s.

The correction of radioactive decay during the measurement may be omitted in this case. In the present case, the correction factor f_3 also equals 1 due to the long half time of the Pu-242 tracer. The sum of the emission intensities of alpha lines in the range of the plutonium isotope r is close to 1.

The chemical yield η , which is not explicitly occurring in Equation (1), is calculated according to Equation (7):

$$\eta = \frac{R_{\rm n,Tr}}{\varepsilon \cdot A_{\rm Tr}} \tag{7}$$

5.2 Standard uncertainty of the output quantity

Uncertainty contributions arising from sampling are not taken into account in the framework of this Procedures' Manual, as these can depend on many different and often not quantifiable factors.

The variance of the net count rate of the analyte in the blank counting source results from

$$u^{2}(R_{\text{n,BL,r}}) = \left[u_{\text{rel}}^{2}(A_{\text{BL,r}}) + u_{\text{rel}}^{2}(\varepsilon) + u_{\text{rel}}^{2}(p_{\alpha,r})\right] \cdot R_{\text{n,BL,r}}^{2}$$
(8)

The combined variance of the analyte net count rate is calculated by Equation (9)

$$u^{2}(R_{n,r}) = \mu_{0} \cdot R_{n,r}^{2} + \mu_{1} \cdot R_{n,r} + \mu_{2}$$
(9)

with the auxiliary quantities:

$$\mu_0 = 0 \tag{10}$$

$$\mu_1 = \frac{1}{t_{\rm m}} \tag{11}$$

$$\mu_2 = R_{0,r} \cdot \left(\frac{1}{t_m} + \frac{1}{t_0}\right) + \frac{R_{n,BL,r}}{t_m} + u^2(R_{n,BL,r})$$
(12)

Herein are:

 $t_{\rm m}$ duration of measurement, in s;

 t_0 duration of background measurement, in s;

Correspondingly, the variance of the net count rate of the tracer calculates to:

$$u^{2}(R_{n,Tr}) = \frac{R_{n,Tr}}{t_{m}} + R_{0,Tr} \cdot \left(\frac{1}{t_{m}} + \frac{1}{t_{0}}\right) + \frac{R_{n,BL,Tr}}{t_{m}} + u^{2}(R_{n,BL,Tr})$$
(13)

$$u^{2}(R_{\text{n.BL.Tr}}) = \left[u_{\text{rel}}^{2}(A_{\text{BL.Tr}}) + u_{\text{rel}}^{2}(\varepsilon) + u_{\text{rel}}^{2}(p_{\alpha,\text{Tr}})\right] \cdot R_{\text{n.BL.Tr}}^{2}$$
(14)

The procedural calibration factor is presented as general product, so that its relative variance according to Equation (15) is easier to be calculated from the relative variances of its input quantities:

$$u_{\rm rel}^2(\varphi) = u_{\rm rel}^2(A_{\rm Tr}) + u_{\rm rel}^2(m_{\rm A}) + u_{\rm rel}^2(q_{\rm F}) + u_{\rm rel}^2(R_{\rm n,Tr}) + u_{\rm rel}^2(p_{\alpha,\rm r}) + u_{\rm rel}^2(p_{\alpha,\rm Tr})$$
(15)

The variance of the specific activity $u(a_r)$ calculates by:

$$u^{2}(a_{r}) = R_{n,r}^{2} \cdot u^{2}(\varphi) + \varphi^{2} \cdot u^{2}(R_{n,r}) = a_{r}^{2} \cdot u_{rel}^{2}(\varphi) + \varphi^{2} \cdot u^{2}(R_{n,r})$$
(16)

The combined standard uncertainty includes besides the standard uncertainties of the counting statistics and also that of the radiochemical separation, the determination of the chemical yield and of the calibration. The activities of the plutonium isotopes are normally in the range of the decision threshold, so the proportion of the counting statistics is dominating. The combined standard uncertainty normally amounts between 10 % and 30 %.

6 Characteristic limits of the procedure

The calculation of the characteristic limits follows the standard series ISO 11929 [4]. For further considerations, it is referred to the General Chapters CHAGR-ISO-01 and CHAGR-ISO-02 of this Procedures' Manual [5, 6].

6.1 Decision threshold

The decision threshold a_r^* is calculated by use of the auxiliary quantity μ_2 as follows

$$a_{\rm r}^* = k_{1-\alpha} \cdot \varphi \cdot \sqrt{\mu_2} \tag{17}$$

with $k_{1-\alpha}$ as quantile of the normal distribution for the probability of the type I error α .

6.2 Detection limit

The equation for calculation of the detection limit $a_{\rm r}^{\rm \#}$ is

$$a_{\mathbf{r}}^{\#} = \frac{a_{\mathbf{r}}^{*} \cdot \psi}{\theta} \cdot \left[1 + \sqrt{1 - \frac{\theta}{\psi^{2}} \cdot \left(1 - \frac{k_{1-\beta}^{2}}{k_{1-\alpha}^{2}}\right)} \right]$$
 (18)

with the auxiliary quantities

$$\theta = 1 - k_{1-\beta}^2 \cdot \left(u_{\text{rel}}^2(\varphi) + \mu_0 \right), \tag{19}$$

$$\psi = 1 + \frac{k_{1-\beta}^2}{2 \cdot a_r^*} \cdot (\varphi \cdot \mu_1) \tag{20}$$

and $k_{1-\beta}$ as quantile of the normal distribution for the probability of the type II error β .

6.3 Limits of the coverage interval

The calculation of limits of the coverage interval is not required.

7 Worked examples

The evaluation can be carried out either manually (see Section 7.1) or software supported by Excel® or by the software UncertRadio (see Section 7.2). An Excel® spreadsheet as well as a project file for the software UncertRadio are available on the website of this Procedures' Manual.

7.1 Manual evaluation

In the manual evaluation, the interim results and the result are given rounded with four significant digits.

The following numeric quantity values are used for calculation of the specific activity of Pu-(239+240) in 2,3 kg fish flesh (FM):

$$R_{\rm g,Pu-(239+240)} = 61,73 \cdot 10^{-6} \, {\rm s}^{-1}; \qquad u(R_{\rm g,Pu-(239+240)}) = 5,833 \cdot 10^{-6} \, {\rm s}^{-1};$$
 $R_{\rm g,Pu-242} = 13,62 \cdot 10^{-3} \, {\rm s}^{-1}; \qquad u(R_{\rm g,Pu-242}) = 86,64 \cdot 10^{-6} \, {\rm s}^{-1};$
 $R_{\rm 0,Pu-(239+240)} = 3,0 \cdot 10^{-6} \, {\rm s}^{-1}; \qquad u(R_{\rm 0,Pu-(239+240)}) = 1,225 \cdot 10^{-6} \, {\rm s}^{-1};$
 $R_{\rm 0,Pu-242} = 2,0 \cdot 10^{-6} \, {\rm s}^{-1}; \qquad u(R_{\rm 0,Pu-242}) = 1,0 \cdot 10^{-6} \, {\rm s}^{-1};$
 $A_{\rm BL,Pu-(239+240)} = 12,13 \cdot 10^{-6} \, {\rm Bq}; \qquad u_{\rm rel}(A_{\rm BL,Pu-(239+240)}) = 0,3550$
 $A_{\rm Pu-242} = 56,38 \cdot 10^{-3} \, {\rm Bq}; \qquad u_{\rm rel}(A_{\rm Pu-242}) = 5,625 \cdot 10^{-3};$
 $A_{\rm BL,Pu-242} = 0,180 \cdot 10^{-3} \, {\rm Bq}; \qquad u_{\rm rel}(A_{\rm BL,Pu-242}) = 0,7222;$

$$p_{\alpha,\text{Pu-}(239+240)} = 1,00;$$
 $u_{\text{rel}}(p_{\alpha,\text{Pu-}(239+240)}) = 0,001;$ $p_{\alpha,\text{Pu-}242} = 1,00;$ $u_{\text{rel}}(p_{\alpha,\text{Pu-}242}) = 0,001;$ $q_{\text{F}} = 32,33;$ $u_{\text{rel}}(q_{\text{F}}) = 0,02;$ $\epsilon = 0,3603 \text{ Bq}^{-1} \cdot \text{s}^{-1};$ $u_{\text{rel}}(\epsilon) = 13,045 \cdot 10^{-3};$ $m_{\text{A}} = 70,4 \cdot 10^{-3} \text{ kg};$ $u_{\text{rel}}(m_{\text{A}}) = 2,841 \cdot 10^{-3}.$

The standard uncertainties of the following quantities are neglectable:

$$t_{\rm m} = 1,814 \cdot 10^6 \text{ s};$$
 $f_1 = 1,0;$ $t_0 = 2 \cdot 10^6 \text{ s};$ $f_3 = 1,0;$ $t_A = 45,88 \cdot 10^6 \text{ s}.$

The net count rates according to the Equations (1) to (4) are calculated to:

$$\begin{split} R_{\rm n,BL,Pu-(239+240)} &= 12,13\cdot 10^{-6}\cdot 0,3603\cdot 1,00~{\rm s}^{-1} = 4,370\cdot 10^{-6}~{\rm s}^{-1} \\ R_{\rm n,BL,Pu-242} &= 0,180\cdot 10^{-3}\cdot 0,3603\cdot 1,00~{\rm s}^{-1} = 64,85\cdot 10^{-6}~{\rm s}^{-1} \\ R_{\rm n,Pu-(239+240)} &= (61,7284-3,0-4,370)\cdot 10^{-6}~{\rm s}^{-1} = 54,36\cdot 10^{-6}~{\rm s}^{-1} \\ R_{\rm n,Pu-242} &= (13,618\cdot 10^{-3}-2,0\cdot 10^{-6}-64,85\cdot 10^{-6})~{\rm s}^{-1} = 13,55\cdot 10^{-3}~{\rm s}^{-1} \end{split}$$

The variance of the net count rate of the analyte in the counting source is calculated using the variance of the net count rate of the analyte in the blank counting source and the auxiliary quantities μ_1 and μ_2 .

$$\begin{split} u^2 \big(R_{\rm n,BL,Pu-(239+240)} \big) &= [0{,}3550^2 + (13{,}05 \cdot 10^{-3})^2 + 0{,}001^2] \cdot (4{,}370 \cdot 10^{-6})^2 \, {\rm s}^{-2} \approx \\ &\approx 2{,}410 \cdot 10^{-12} \, {\rm s}^{-2} \\ \mu_{\rm 1,Pu-(239+240)} &= \frac{1}{1{,}814 \cdot 10^6 \, {\rm s}} \approx 0{,}5512 \cdot 10^{-6} \, {\rm s}^{-1} \\ \mu_{\rm 2,Pu-(239+240)} &= 3{,}0 \cdot 10^{-6} \, {\rm s}^{-1} \cdot \left(\frac{1}{1{,}814 \cdot 10^6 \, {\rm s}} + \frac{1}{2{,}0 \cdot 10^6 \, {\rm s}} \right) + \frac{4{,}370 \cdot 10^{-6} \, {\rm s}^{-1}}{1{,}814 \cdot 10^6 \, {\rm s}} + \\ &\quad + 2{,}410 \cdot 10^{-12} \, {\rm s}^{-2} \approx 7{,}973 \cdot 10^{-12} \, {\rm s}^{-2} \\ u^2 \big(R_{\rm n,Pu-(239+240)} \big) &= 0{,}5512 \cdot 10^{-6} \, {\rm s}^{-1} \cdot 54{,}36 \cdot 10^{-6} \, {\rm s}^{-1} + 7{,}973 \cdot 10^{-12} \, {\rm s}^{-2} \approx \\ &\approx 37{,}94 \cdot 10^{-12} \, {\rm s}^{-2} \end{split}$$

Correspondingly, the variance of the net count rate of the tracer is determined:

$$\begin{split} u^2\big(R_{\rm n,BL,Pu-242}\big) &= [0.7222^2 + (13.045 \cdot 10^{-3})^2 + 0.001^2] \cdot (64.85 \cdot 10^{-6})^2 \, {\rm s}^{-2} \approx \\ &\approx 2.194 \cdot 10^{-9} \, {\rm s}^{-2} \\ \mu_{\rm 1,Pu-242} &= \frac{1}{1.814 \cdot 10^6 \, {\rm s}} \approx 0.5512 \cdot 10^{-6} \, {\rm s}^{-1} \\ \mu_{\rm 2,Pu-242} &= 2.0 \cdot 10^{-6} \, {\rm s}^{-1} \cdot \left(\frac{1}{1.814 \cdot 10^6 \, {\rm s}} + \frac{1}{2.0 \cdot 10^6 \, {\rm s}}\right) + \frac{64.85 \cdot 10^{-6} \, {\rm s}^{-1}}{1.814 \cdot 10^6 \, {\rm s}} + \\ &\quad + 2.194 \cdot 10^{-9} \, {\rm s}^{-2} \approx 2.232 \cdot 10^{-9} \, {\rm s}^{-2} \\ u^2\big(R_{\rm n,Pu-242}\big) &= 0.5512 \cdot 10^{-6} \, {\rm s}^{-1} \cdot 13.55 \cdot 10^{-3} \, {\rm s}^{-1} + 2.232 \cdot 10^{-9} \, {\rm s}^{-2} \approx \\ &\approx 9.701 \cdot 10^{-9} \, {\rm s}^{-2} \end{split}$$

The procedural calibration factor defined in Equation (2) amounts to:

$$\varphi = \frac{56,38 \cdot 10^{-3}}{70.4 \cdot 10^{-3} \cdot 32,33} \cdot \frac{1,00}{1,00} \cdot \frac{1,0 \cdot 1,0}{13.55 \cdot 10^{-3}} \text{ Bq} \cdot \text{s} \cdot \text{kg}^{-1} = 1,828 \text{ Bq} \cdot \text{s} \cdot \text{kg}^{-1}$$

The specific activity in fish flesh relating to fresh mass according to Equation (1) is:

$$a_{\text{Pu}-(239+240)} = 1,828 \text{ Bq} \cdot \text{s} \cdot \text{kg}^{-1} \cdot 54,36 \cdot 10^{-6} \text{ s}^{-1} = 99,37 \cdot 10^{-6} \text{ Bq} \cdot \text{kg}^{-1}$$

The relative variance of the procedural calibration factor is calculated according to Equation (15):

$$u_{\text{rel}}^{2}(\varphi) = (5,625 \cdot 10^{-3})^{2} + (2,841 \cdot 10^{-3})^{2} + 0,02^{2} + \left(\frac{98,49 \cdot 10^{-6}}{13,55 \cdot 10^{-3}}\right)^{2} + 0,001^{2} + 0,001^{2} \approx 0,495 \cdot 10^{-3}$$

The variance of the specific activity is according to Equation (16):

$$u^{2}(a_{Pu-(239+240)}) = (99,37 \cdot 10^{-6} \text{ Bq} \cdot \text{kg}^{-1})^{2} \cdot 0,495 \cdot 10^{-3} +$$

$$+ (1,828 \text{ Bq} \cdot \text{s} \cdot \text{kg}^{-1})^{2} \cdot 37,94 \cdot 10^{-12} \text{ s}^{-2} \approx$$

$$\approx 0,1317 \cdot 10^{-9} \text{ Bq}^{2} \cdot \text{kg}^{-2}$$

The combined standard uncertainty is

$$u(a_{\text{Pu}-(239+240)}) = \sqrt{0.1317 \cdot 10^{-9} \text{ Bq}^2 \cdot \text{kg}^{-2}} \approx 11.47 \cdot 10^{-6} \text{ Bq} \cdot \text{kg}^{-1}$$

Therewith, the specific activity of Pu-(239+240) in fish flesh related to fresh mass results to:

$$a_{\text{Pu}-(239+240)} = (99.37 \pm 11.47) \cdot 10^{-6} \text{ Bq} \cdot \text{kg}^{-1} \text{ (FM)}$$

With the quantile $k_{1-\alpha}$ of 3 and the values of the quantities mentioned above as well as the value of the auxiliary quantity μ_2 arising the decision threshold $a_{\text{Pu-}(239+240)}^*$ is calculated to:

$$\alpha^*_{\text{Pu}-(239+240)} = 3 \cdot 1,828 \text{ Bq} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \sqrt{7,973 \cdot 10^{-12} \text{ s}^{-2}} \approx 15,48 \cdot 10^{-6} \text{ Bq} \cdot \text{kg}^{-1}$$

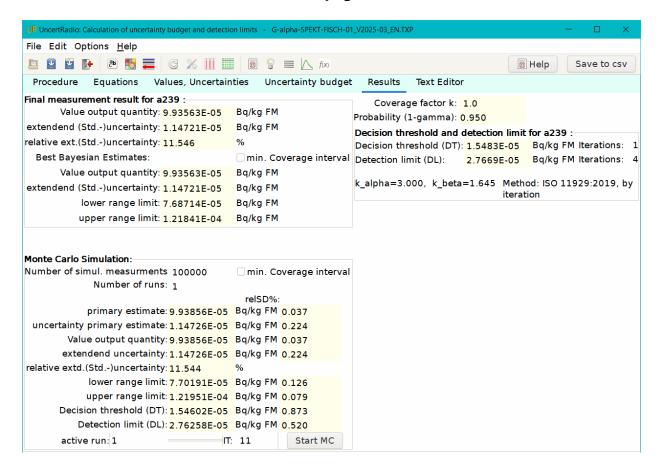
With the quantile $k_{1-\beta}$ of 1,645 and the values of the auxiliary quantities

$$\theta = 1 - 1,645^2 \cdot [0,495 \cdot 10^{-3} + 0] \approx 0,9987$$

$$\psi = 1 + \frac{1,645^2}{2 \cdot 15,48 \cdot 10^{-6} \text{ Bq} \cdot \text{kg}^{-1}} \cdot 1,828 \text{ Bq} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \frac{1}{1,8144 \cdot 10^6 \text{ s}} \approx 1,088$$

the detection limit of the specific Pu-(239+240)-activity $a_{Pu-(239+240)}^{\#}$ calculates according to Equation (18) to:

$$a_{\text{Pu-}(239+240)}^{\#} = \frac{15,48 \cdot 10^{-6} \cdot 1,088}{0,9987} \cdot \left[1 + \sqrt{1 - \frac{0,9987}{1,088^2} \cdot \left(1 - \frac{1,645^2}{3^2}\right)} \right] \text{Bq} \cdot \text{kg}^{-1} \approx 27,66 \cdot 10^{-6} \text{ Bq} \cdot \text{kg}^{-1}$$


7.2 Software supported evaluation

7.2.1 View of the Excel® spreadsheet

G-α-SPEKT-FISCH-01						March 2025		
Procedures' manual for monitoring of radioactive su	bstances in the	environment an	d of external radia	ition (ISSN 186	55-8725)			
SAMPLE IDENTIFICATION: 17379, herring (who			e fish) ANALYTE: Pu-(239+240)					
#Number of input quantities	1				User-Input:	definition quantities/Excel variables		
k_alpha		-	Create Excel			Input of Excel formulae		
k_beta	1,64		variables!		E LIVEA	Input of values of quantities		
gamma	0,0	<u> </u>			Excel-VBA:	#Keywords	/l: -	
						Values from V	/Dasic	
DATA INPUT					UNCERTAINT	Y BUDGET		
#Values of input quantities	Unit	Excel variable	Input values	StdDev	partial	uncertainty	budget	
					derivatives	budget:	in %	
#Number of gross counts Ng		Ng	112	10,58				86,361283
background count rate in the lines of Pu-(239+240)	1/s	R0	3,000E-06	1,225E-06	7			3,8073831
gross count rate of the tracer Pu-242	1/s	RgTr	1,362E-02	8,664E-05	7			0,3065682
background count rate in the line of the tracer Pu-24		ROTr	2,000E-06	1,000E-06	7			4,08452E
duration of measurement	S	tm	1,814E+06	4.2005	-6,2185E-11			C 44044
Pu-(239+240) activity in the blank couting source	Bq	ABI	1,213E-05	4,306E-06				6,1101167
activity of the tracer in the blank counting source activity concentration of the Pu-242 tracer solution	Bq Ba/ml	ABIT CT1	1,800E-04 2,255E-01	1,300E-04 1,130E-03	7			0,0896045
added volumen of Pu-242 tracer solution	Bq/ml ml	_CTT _VT1	2,255E-01 2,500E-01	6,600E-04				0,0522758
mass of the ash used for analysis	kg	_vii ma	7,040E-01	2,000E-04				0,0605389
ratio of fresh mass to ash mass	ку	qF	3,233E+01	6,466E-01				3.0002158
sum of the emission intensities of the Pu-242 tracer		PaT	1,000E+00	1,000E-03				0,007572
sum of the emission intensities of the Pu-(239+240)		PaA	1,000E+00	1,000E-03				0,007572
detection efficiency		eps	3.603E-01	4,700E-03	7			0,0072979
decay correction for Pu-(239+240)		_f1	1,000E+00	1,7 002 03	9,93563E-05			0,007.237.3
decay correction for the Pu-242 tracer		_r.	1,000E+00		9,93563E-05			
(List can be continued here)			1,1002100		0,000000			
MODEL SECTION	EL SECTION Result = phi * Rn							
Derived quantities			(Formulae)					
#Gross count rate Rg	1/s	RgA	6,173E-05					
count rate in the alpha lines of Pu-(239+240) in a blank counting source	1/s	RBL	4,370E-06					
count rate in the alpha lines of the Pu-242 tracer in a blank counting source	1/s	RBLT	6,485E-05					
net count rate of the tracer	1/s	RnT	1,355E-02					
added activity of the Pu 242-tracer	Bq	Atr	5,638E-02					
chemical yield		eta	6,672E-01					
(List can be continued here)							1	
#Net count rate Rn	1/s	Rn	5,436E-05		С	alculate!		
#Calibration factor, proc.dep.	Bq*s/kg	phi	1,828E+00					
#Value output quantity	Bq/kg	Result	9,936E-05	2,767E-05	< output val	ue modifiable	by VBA	
#Standard uncertainty output quantity	Bq/kg	uResult	1,147E-05					
#Decision threshold	Bq/kg		1,548E-05					
#Detection limit	Bq/kg		2,767E-05	l				
FURTHER DERIVED QUANTITIES		0	_					
Auxiliary quantity Omega		Omega	1					
Best estimate	Bq/kg	BestEst	9,936E-05					
Standard uncertainty best estimate	Bq/kg		1,147E-05					
Coverage interval (lower limit)	Bq/kg		7,687E-05					
Coverage interval (upper limit)	Bq/kg		1,218E-04					

The corresponding Excel® spreadsheet is available on the website of this Procedures Manual.

7.2.2 View of the UncertRadio result page

The corresponding UncertRadio project file is available on the website of this Procedures Manual.

8 Catalogue of the chemicals and equipment

8.1 Chemicals

The chemicals used shall be of analytically pure quality.

— ammonia solution, NH₃: 13,4 mol·l⁻¹;

slight ammonia-containing water: distilled water with ammonia solution,

pH value about 8;

ammonium oxalate solution: 0,32 mol·l⁻¹

dissolve 4,6 g (NH₄)₂C₂O₄·H₂O in distilled water and fill

up with distilled water to 100 ml;

anion exchange resin:
 DOWEX 1 x 2, 50 mesh to 100 mesh, chloride

form;

ascorbic acid containing

hydrochloric acid: $0.5 \text{ mol} \cdot l^{-1}$ ascorbic acid in 1 mol· l^{-1} HCl,

8,3 ml HCl (12,1 mol·l $^{-1}$) and 8,81 g ascorbic acid (0,05 mol) filled up with distilled water to 100 ml.

Prepare always fresh!

cleaning agent: strongly basic laboratory cleaning agent,

pH value greater 13, as solution (2 %)

— hydrochloric acid, HCl: 12,1 mol·l⁻¹;

hydrochloric acid, HCl:
 1 mol·l⁻¹

83 ml HCl (12,1 mol·l⁻¹)) filled up with distilled water

to 1000 ml;

— hydrochloric acid, HCl: 3 mol·l $^{-1}$,

248 ml HCl (12,1 mol·l $^{-1}$) filled up with distilled water

to 1000 ml;

— hydrochloric acid, HCl: 4 mol·l $^{-1}$,

331 ml HCl (12,1 mol·l⁻¹) filled up with distilled water

to 1000 ml;

— hydrochloric acid, HCl: 9 mol· l^{-1} ,

744 ml HCl (12,1 mol· l^{-1}) filled up with distilled water

to 1000 ml;

— hydrofluoric acid, HF: 22,6 mol·l⁻¹;

mixed solution from

hydrochloric/hydrofluoric acid: 0,36 mol·l⁻¹ HCl in 0,01 mol·l⁻¹ HF,

7,5 ml HCl (12,1 mol·l⁻¹) and 0,13 ml HF (22,6 mol·l⁻¹)

filled up with distilled water to 250 ml;

— nitric acid, HNO₃: 14,4 mol·l⁻¹;

— nitric acid, HNO₃: 8 mol·l⁻¹,

1108 ml HNO₃ (14,4 mol·l⁻¹) filled up with distilled

water to 2000 ml;

— Pu-242 tracer solution:
 ca. 200 mBq·ml⁻¹ in HNO₃ (8 mol·l⁻¹);

quartz wool;

sodium nitrite, NaNO₂;

— sodium nitrite solution 1: 7,25 mol·l $^{-1}$,

25 g NaNO₂ filled up with distilled water to 50 ml.

Prepare always fresh!

— sodium nitrite solution 2: 1,74 mol·l⁻¹,

0,6 g NaNO₂ filled up with distilled water to 5 ml.

Prepare always fresh!

— sulfuric acid, H_2SO_4 : 18 mol·l⁻¹;

tri-n-octylphosphineoxide

(TOPO) in cyclohexane: 0,2 mol·l⁻¹,

77,13 g tri-n-octylphosphineoxide (TOPO) filled up

with cyclohexane to 1000 ml.

8.2 Equipment

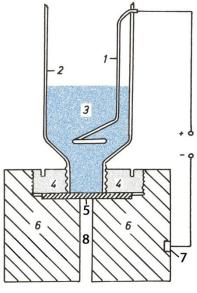
8.2.1 Laboratory equipment

This procedure requires an ordinary laboratory equipment.

Additionally, the following equipment is necessary:

- centrifuge with beakers made of polyethylene (400 ml, 1000 ml);
- chromatography columns with reservoir and PTFE-valve (length 10 cm, inner diameter 8 mm) to hold the anion exchange resin;
- constant current power supply (max. 30 V, 5 A);
- electrodeposition apparatus (see Figure 1);
- glass beakers (250 ml, 600 ml, 1000 ml);
- glass fibre filter (pore size 0,45 μm), adapted to the inner diameter of the glass column used;
- sand bath:
- separating funnel (250 ml, 1000 ml);
- stainless steel plates (diameter 25 mm, V2A-steel, material identifier 1.4301g).

8.2.2 Apparatus for electrodeposition of plutonium


The electrodeposition apparatus is presented schematically in Figure 1.

A new electrolysis vessel is used for each electrodeposition procedure in order to avoid cross contamination. Stainless steel plates prepared according to Section 8.3.2.2 must be connected tight fitting to the stainless steel plate and must be connected to the minuspole of the constant current power supply. The platinum electrode taken out of the nitric acid is rinsed with distilled water and attached in the slit of the electrolysis vessel at a distance of approximately 10 mm to stainless steel plate.

A central borehole of 6 mm allows to remove the preparation to the top of the stainless steel block via pushing a bar through the bottom.

The analysis solution is thoroughly mixed via gas formation and process heat during electrodeposition. The plastic electrolysis cell is covered by a suitable single bulb condenser (not included in Figure 1) to reduce losses through evaporation.

Legend:

- 1 platinum wire (Ø 1 mm) with a total length of 7 cm, whose end is rolled to a spiral of 1,5 cm diameter:
- 2 plastic electrolysis vessel (e. g. LSC-vials with truncated bottom) and slit;
- 3 solution for analysis;
- 4 threaded ring of stainless steel;
- 5 stainless steel plate;
- 6 black from stainless steel (height 4 cm, Ø 5,8 cm);
- plug of the constant current power supply;
- B borehole (Ø 6 mm).

Fig. 1: Apparatus for electrochemical deposition of plutonium (not in scale)

8.2.3 Measurement devices

Alpha spectrometer with ion-implanted semiconductor detector with an area of minimum of 300 mm² and full width at half peak maximum of better than 20 keV.

8.3 Preliminary work

8.3.1 Preparation of glassware

All glassware used is placed in 70 °C warm cleaning agent solution (2 %) overnight. Afterwards, they are thoroughly rinsed with tap water, shortly put into hydrochloric acid (1 mol·l⁻¹) and thoroughly rinsed with distilled water.

8.3.2 Preparation of the anion exchange column

8.3.2.1 Conversion of the anion exchange resin from chloride into nitrate form

The DOWEX 1 x 2 anion exchange resin is converted into the nitrate form by placing it in nitric acid (8 mol· I^{-1}) for at least 24 hours.

The resin is rinsed two to three times with approx. 1,5 bed volumes of nitric acid (8 mol·l⁻¹). The rinsing solution is either sucked up or decanted, depending on the quality of the resin. The prepared resin is stored in 1,5 bed volumes of distilled water.

8.3.2.2 Packing of the anion exchange column

If only chromatography columns without frit are available, a glass wool plug is inserted into the column. A glass-fibre filter with 0,45 μ m pore size is placed on its top. The anion exchange resin prepared according to Section 8.3.2.1 is filled to height of 5 cm into the column and is covered by an additional glass-fibre filter.

8.3.2.3 Conditioning of the anion exchange column

The resin is washed using 50 ml nitric acid (8 mol·l⁻¹) at a flow rate of 1 ml per minute.

Note:

The anion exchange resin must remain moistened throughout the workflow. The column loaded with resin must not run dry.

8.3.3 Preparation of the electrodeposition

8.3.3.1 Cleaning and operational test of the electrolysis apparatus

The stainless steel block of the electrolysis apparatus is cleaned as described for glassware in Section 8.3.1.

A cleaning electrodeposition (see Section 3.4) without tracer is frequently carried out for one hour to test the stainless steel block and the platinum electrode for potential. The stainless steel plate is then analysed as control. Is the cleaning electrodeposition carried out as operational test, only, the stainless steel plate may be discarded.

8.3.3.2 Preparation of the stainless steel plates

Stainless steel plates are treated with a cleaning agent solution (2 %) in an ultrasonic bath at 50°C for 5 minutes, first. Afterwards, they are thoroughly cleaned with distilled water and once with ethanol before stored in ethanol. Before use, prepared stainless steel plates are removed out of the storage solution and dried at approximately 70 °C on a hotplate.

References

- [1] Allgemeine Verwaltungsvorschrift zum integrierten Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt (IMIS) nach dem Strahlenschutz-vorsorgegesetz (AVV-IMIS). Bundesanzeiger Nr. 244a, p. 4-80.
- [2] Vogl, K.: Alphaspektrometrie. α-SPEKT/GRUNDL, Version September 1992. In: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, (ed.): Messanleitungen für die Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung. 1865-8725.

Available at: https://www.bmuv.de/WS1517. [Last access 27.10.2023].

- [3] Heckel, A., Vogl, K., Wershofen, H.: *Grundlagen der Radiochemie*. RAD-CHEM/GRUNDL, Version Juli 2011. In: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, (ed.): Messanleitungen für die Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung. ISSN 1865-8725. Available at: https://www.bmuv.de/WS1517. [Last access 07.03.2024].
- [4] Standard series ISO 11929:2019-02, Determination of the characteristic limits (decision threshold, detection limit and limits of the coverage interval) for measurements of ionizing radiation Fundamentals and application (Parts 1 to 3).
- [5] Kanisch, G., Aust, M.-O., Bruchertseifer, F., Dalheimer, A., Heckel, A., Hofmann, S., et al.: Bestimmung der charakteristischen Grenzen bei der Aktivitätsbestimmung radio-aktiver Stoffe Teil 1: Grundlagen. CHAGR-ISO-01, Version Mai 2022. In: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, (ed.): Messanleitungen für die Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung. ISSN 1865-8725.

 Available at: https://www.bmuv.de/WS1517. [Last access 26.10.2024].
- [6] Kanisch, G., Aust, M.-O., Bruchertseifer, F., Dalheimer, A., Heckel, A., Hofmann, S., et al.: Bestimmung der charakteristischen Grenzen bei der Aktivitätsbestimmung radio-aktiver Stoffe Teil 2: Anwendungsbeipsiele. CHAGR-ISO-02, Version Juni 2024. In: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, (ed.): Messanleitungen für die Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung. ISSN 1865-8725.

Available at: https://www.bmuv.de/WS1517. [Last access 11.03.2025].